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a b s t r a c t

Resistance random access memory (RRAM) consisting of stacked Al/TiOx/Al structure is demonstrated on
a flexible and transparent substrate. To improve cell to cell uniformity, TiOx formed by atomic layer depo-
sition is used for resistive switching material. The simple cross-bar structure of the RRAM and good duc-
tility of aluminum electrode results in excellent flexibility and mechanical endurance. Particularly,
bipolar and unipolar resistive switching (BRS, URS) behavior appeared simultaneously were investigated.
Depending on the current compliance, BRS or URS could be selectively observed. Furthermore, the per-
manent transition from BRS to URS was observed with a specific current compliance. To understand this
transition behavior, the c-ray irradiation effect into resistive switching is primarily investigated.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction num [9] and sol–gel derived zinc oxide [10] were used as resistive
Many flexible devices have been developed for electronic pa-
per, transistors for displays, sensors, solar cells, and organic light
emitting diodes [1–3]. Based on this technological trend, the need
for a flexible type of memory will also increase to support these
flexible electronic devices, similar to the role of flash memory
in solid state electronics today. However, most types of flexible
memories have been based on organic materials [4–6]. Although
organic memory shows good flexibility, its performance cannot
match that of conventional flash memory. Additionally, the fabri-
cation process of organic memory is complicated by the require-
ments of controlled external conditions. These limitations require
additional efforts to improve memory performance and increase
processing costs.

Recently, resistance random access memory (RRAM) has at-
tracted great attention due to its potential to replace flash memory
in next-generation nonvolatile memory applications [7,8]. The
resistive switching effect is observed as a result of various insulat-
ing materials that consist of CMOS process compatible inorganic
materials. In addition, the current–voltage (I–V) characteristics of
the simple metal–insulator–metal (MIM) structure exhibit rapid
switching speeds and distinctive changes of the resistance between
the high resistance state (HRS) and the low resistance state (LRS).

In the present study, the fabrication of a flexible type of RRAM is
reported. In an earlier work by the authors, plasma oxidized alumi-
ll rights reserved.
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switching material for flexible type RRAM. On the other hand, in
this study, atomic layer deposition (ALD) process is used to im-
prove cell to cell uniformity and for realistic feasibility in flexible
memory applications using existing semiconductor technology.
The structural simplicity and good ductility of aluminum electrode
result in advantages that include good flexibility, mechanical
endurance, and durability. In addition, the resistive switching
mechanism is investigated by means of a permanent transition
from bipolar resistive switching (BRS) to unipolar resistive switch-
ing (URS) in TiOx films, as understood through c-ray irradiation
effects.
2. Device fabrication

The flexible RRAM was fabricated on the flexible and transpar-
ent substrate of polyethersulfone (PES), as shown in Fig. 1. The PES
film was glued onto a silicon wafer with polyimide. Aluminum
with a thickness of 150 nm was used for the top and bottom elec-
trodes. The electrodes were patterned by conventional photoli-
thography ranging from 2 � 2 to 100 � 100 lm2. TiOx of 10 nm
thickness was used to formulate the resistive switching material.
The TiOx films were deposited using plasma-enhanced atomic layer
deposition at 180 �C. The process temperature of the deposition is
limited by the maximum working temperature of PES, which is
200 �C. The thicknesses of the deposited films were confirmed by
transmission electron microscopy images. The silicon wafer served
only as a mechanical support during the processing stage; it was
subsequently peeled off manually after the fabrication of the flex-
ible RRAM.
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Fig. 1. The process flow of flexible RRAM and a photograph of flexible RRAM.
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Fig. 2. (a) Typical I–V curve of an Al/TiOx/Al device. The inset represents I–V
characteristics for Fig. 2a in a double-logarithmic plot. (b) Endurance test under the
current compliance of 500 lA. In addition, data retention characteristics for HRS
and LRS; the resistance values in HRS and LRS were read at 0.2 V at 85 �C.
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3. Resistive switching mechanism

3.1. Switching performance

Fig. 2a shows the typical switching characteristics of Al/TiOx/Al
that produces BRS. Bias sweeps were conducted in the direction
0 V ? �3 V ? 0 V ? 3 V ? 0 V. The current increased sharply at a
negative bias (VSET) and switched from HRS to LRS. The LRS remains
during the voltage sweep back at a positive bias less than VRESET.
The resistance ratio (Roff/Ron) between HRS and LRS is larger than
50 at VREAD = 0.2 V under a compliance current of 500 lA. Fig. 2b
shows the measured retention characteristics of the fabricated
Al/TiOx/Al devices in the HRS and in the LRS. No significant changes
of the resistance in either case were observed after 104 s at 85 �C.
Additionally, the reliable endurance showing a sustained resis-
tance ratio larger than 50 is achieved even after switching cycles
of 105 times, as shown in Fig. 2b.

On the one hand, one interesting phenomenon was observed
that both BRS and URS could be appeared in TiOx films depending
on the current compliance. TiOx films show the BRS mode at a low
current compliance (<500 lA) while revealing the URS mode at a
high current compliance (>10 mA) after electroforming process,
as shown in Fig. 3a. Furthermore, a permanent transition from
BRS to URS was observed when a high current (�3 mA) was ap-
plied. After the transition of the switching mode, the Roff/Ron value
and distribution changed dramatically, as shown in Fig. 3b.
3.2. Oxygen vacancies in TiOx

The inset of Fig. 2a shows a logarithmic plot of the I–V charac-
teristics of TiOx films for BRS mode. In the low-voltage region, the
current is linearly proportioned to the voltage (I / V), which is fol-
lowed by I / V2. The I / V2 correlation can be understood as the ef-
fect of the space-charge-limited current (SCLC) [11–13]. From a
previous analysis by the authors [14], it was verified that the resis-
tive switching of Al/TiOx/Al device was governed by SCLC in the
only TiOx layer near the top electrode. However, a suitable physical
analysis of TiOx film could not be provided.

To carry out further detail analysis for resistive switching,
Fig. 4a shows a transmission electron microscope (TEM) image of
the fabricated Al/TiOx/Al device. As shown in Fig. 3a, a TiOx layer
with a thickness of 10 nm was deposited initially. However, be-
tween the top electrode and the TiOx layer, another layer
(�5 nm) was newly generated. To identify this layer, a transmis-
sion electron microscope-energy dispersive X-ray spectrometry
(TEM–EDX) analysis was carried out. Fig. 4b shows the scanned
atom profiling between top and bottom electrode by TEM–EDX
analysis. From this data, it is found that an oxygen-deficient layer
was preferentially produced in the TiOx layer near the top electrode
naturally. It was also observed that some fraction of the aluminum
in the top electrode diffused into the TiOx layer. The newly gener-
ated layer (the oxygen-deficient layer) can be considered as an Al-
doped TiOx layer. For the Al-doped TiO2, Al3+ substitutes for Ti4+

within the TiOx, and oxygen vacancies can be produced by diffused
Al3+ [15]. It is improbable that an Al3+ ion in TiOx acts as a trap and
captures an electron; instead, an oxygen vacancy traps an electron
[16,17].

Therefore, the mechanism of BRS mode can be speculated that
oxygen vacancies in the TiOx layer near the top electrode act as
traps for electrons as shown in Fig. 5a. During SET process, injected
electrons from the top electrode are filled oxygen vacancies and
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Fig. 3. (a) The switching mode transition depends on the compliance current level
in TiOx films. (b) Ron and Roff distribution in both the BRS and URS modes.
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Fig. 4. (a) Transmission electron microscopy image of the Al/TiOx/Al structure. (b)
TEM–EDX depth profiling data. An oxygen-deficient layer is induced by the active-
top aluminum.
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oxygen ions move to the bottom electrode, which generates the
additional oxygen vacancies. Consequently, distributed oxygen
vacancies induce trap-controlled SCLC and dominantly contribute
to the resistive switching. On the other hand, in the case of HRS
mode, defects such as oxygen vacancies tend to be aligned to form
tiny conducting filaments in the bulk region after electroforming
process [18], as shown in Fig. 5b. Although primary oxygen vacan-
cies are localized near the top electrode, oxygen vacancies are re
distributed or some defects are newly generated due to the high
electric field during electroforming process. These tiny conducting
filaments gather together to form stronger and more conducting
filaments, which lead to the transition to the LRS. During RESET
process, electrons are depleted in some oxygen vacancies (espe-
cially near the top electrode) and electron-depleted oxygen vacan-
cies are recombined with O2�. It has been still in controversy that
the HRS current of the URS mode may be transported through the
oxide films through hopping conduction [19], Poole–Frenkel emis-
sions [20], or by the space-charge-limited current [21].
3.3. BRS and URS transition and mechanism

Permanent switching mode transition, BRS–URS, according to
the current compliance, has been reported elsewhere [22,23] that
it was observed restrictedly in titanium oxide material. The first
observation of the transition characteristic was reported by Jeong
et al. in Pt/TiO2/Pt stack [22]. At that time, however, the only obser-
vation of transition was reported and physical analysis was not
provided. More intensive analysis was carried out by Wang et al.
using analyses of correlation between RESET condition and Ron

[23]. From correlation between RESET current and Ron, the URS
mode of TiOx was in accordance with the thermal dissolution mod-
el [24], which states that, the conductive filament was thermally
destroyed by current crowding and local heating effects during RE-
SET. In addition, the BRS mode of TiOx can be understood from cor-
relation between RESET voltage and Ron by the redox-reaction
model [25]. It implies that resistive switching is caused by a local
electrochemical redox reaction near the top electrode (anode)
interface. These explanations are well consistent with aforemen-
tioned switching mechanism of Al/TiOx/Al device.

In this work, to investigate transition characteristic from BRS to
URS in detail, c-irradiation technique was introduced. The total
irradiation dose was 100 krad with a dose rate of 50 rad/s. The
resistive switching of the TiOx films was performed in the BRS
mode at first. Then, c-ray was irradiated into the device with
60Co. Lastly, the URS mode was achieved after mode transition at
3 mA current compliance. The device which showed a transition
BRS to URS without c-irradiation was also investigated as a control
group. Fig. 6a shows experimental results that modulation of Ron
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Fig. 5. (a) The schematic diagram for the mechanism of BRS mode. (b) The
schematic diagram for the mechanism of URS mode.
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and Roff in a comparison made with and without c-irradiation in
the URS mode. In the case of the URS mode with c-irradiation, only
Roff was decreased after switching mode transition. It was known
that the valence of the Ti ion varies after irradiation that the Ti3+

ion increases in contrast with the Ti4+ ion decreases [26]. A fraction
of Ti4+ ions turns to Ti3+ ions and the chemical composition
changes as 2TiO2 + 2e�? Ti2O3 + O2�, hence excess oxygen ions
(O2�) and oxygen vacancies are created in the irradiated layer.

Consequently, more conducting filaments are formed by c-ray
induced excess oxygen ions when the switching mode transition
was occurred because defects such as oxygen vacancies tend to
form conducting filaments. In the case of LRS in the URS mode,
there is no significant change between with and without c-irradi-
ation. It can be understood that excess filaments has not an impor-
tant role for current flowing because current mainly flow thorough
the main filaments which connect both electrodes, as shown in
Fig. 6b (expected filaments formation is referred to simulation re-
sults by random circuit breaker network model [27]). However, in
the case of HRS in the URS mode, remained excess filaments cause
the leakage current path, so Roff is decreased. This behavior from
excess filaments is equivalent to the cell area dependency of the
HRS and LRS in URS mode. Generally, in the case of URS, Roff in-
creases as the cell area decreases, whereas Ron is independent of
the cell area. It implies that larger cell area device has the more ex-
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cess filaments, so more leakage current path reduces Roff. There-
fore, during switching mode transition, oxygen ions and vacancies
are redistributed and formed conducting filaments due to the en-
ough energy from the high compliance current. During this pro-
cess, the amount of oxygen ions and vacancies determines the
behavior of resistive switching after transition.

4. Flexibility and mechanical endurance

Good mechanical flexibility is crucial for applications in flexible
electronics. The level of mechanical endurance was evaluated by
performing a substrate bending test in which both tensile and
compressive stresses were induced, as shown in Fig. 7a. A vibrator
was used to induce substrate bending 4 times/s for the total of 105

bends. Even at 105 bends, the Roff/Ron value was unchanged. In
addition, the devices exhibited good flexibility, as shown in
Fig. 7b. In the flexibility test, severe bending of the device did
not affect memory performance. These results indicate that the
switching characteristics of flexible RRAM are independent of de-
vice bending due to the good ductility of the aluminum electrode
and the mechanical endurance arising from the simple device
structure.

5. Conclusions

RRAM device was fabricated and showed reliable endurance
and retention characteristics, even on a flexible substrate. The tran-
sition behavior from BRS to URS was understood with the aid of c-
irradiation. This flexible type of RRAM is attractive for low-cost and
wearable devices and may be suitable in flexible displays.
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