First Demonstration of a Wrap-Gated CNT-FET with Vertically-Suspended Channels

Dongil Lee¹, Byung-Hyun Lee¹, Jinsu Yoon², Bongsik Choi², Jun-Young Park¹, Dae-Chul Ahn¹, Choong-Ki Kim¹, Byeong-Woon Hwang¹, Seung-Bae Jeon¹, Hyun Jun Ahn¹, Myeong-Lok Seol³, Min-Ho Kang⁴, Byung Jin Cho¹, Sung-Jin Choi^{2*} and Yang-Kyu Choi^{1*}

¹School of Electrical Engineering, KAIST, Daejeon 34141, Korea, Email: <u>ykchoi@ee.kaist.ac.kr</u>

²Kookmin University, Seoul, 02707, Korea, Email: <u>sjchoiee@kookmin.ac.kr</u>

³NASA Ames Research Center, Moffett Field, CA 94035, USA, ⁴National Nanofab Center, Daejeon 34141, Korea

Abstract—Fully wrap-gated carbon nanotube (CNT) transistors with vertically suspended (VS) semiconducting single-walled CNTs, purified up to 99.9%, are demonstrated for the first time. Without a sacrifice of scalability, remarkably enhanced gate controllability and charge transport capabilities were achieved due to the geometrical advantage of the gate-all-around (GAA) structure with multiple channels. The VS channels were formed with the aid of a silicon-processed vertically integrated nanowire frame, offering high completeness and compatibility with silicon processes. This approach will increase the applicability of CNTs toward high-performance emerging materials.

I. INTRODUCTION

Until recently, Moore's law has guided the development of MOSFETs. However, the down-scaling of the conventional MOSFETs now confronts fundamental limits. An alternative channel material or a novel device structure should be exploited to move beyond Moore's law. Under this circumstance, FETs based on single-walled carbon nanotubes (CNT) have shown attractive properties compared to a conventional silicon-based FET in terms of improved performance and energy efficiency in digital logic circuits [1] [2]. However, CNT-based FETs are associated with several problems. First, semiconducting CNTs should be highly purified to achieve a high on/off current ratio (I_{ON}/I_{OFF}) . Second, minimization of the small inter-CNT spacing is necessary to attain a high ION value. Finally, high gate controllability should be guaranteed for a low sub-threshold slope (SS). Regarding these requirements of highly purified semiconducting CNTs with increased packing density levels, earlier studies reported purity levels exceeding 99% and densities higher than 200 CNTs/ μ m (inter-CNT spacing ≤ 5 nm) [3-5]. From a structural standpoint, a three-dimensional gate-all-around (GAA) nanowire FET exhibits more desirable electrical characteristics compared to a conventional in-plane two-dimensional MOSFET. Hence, a GAA CNT-FET composed of a single CNT channel has been reported [6]. Nevertheless, the requirements of a high packing density levels for a proper I_{ON} value and high purification to ensure a low I_{OFF} value remain challenging. Moreover, wafer-scale compatibility with standard CMOS fabrication is another concern. Here, for the first time, a vertically suspended and wrap-gated CNT-FET (termed "VS-wrap-gated CNT-FETs" in this paper) is fabricated by CMOS-compatible processes.

This VS-wrap-gated CNT-FET that consists of multiple suspended CNTs with high purity (99.9%) levels greater by one order of magnitude shows a high I_{ON} , a low I_{OFF} , a steep SS, and low hysteresis (ΔV_{HYS}). Multiple vertically suspended CNT channels without agglomeration provide a remarkable increase in the CNT density per unit area as well as high gate controllability of the CNT channels. In addition to the CMOS standard processes, critical-point drying (CPD) and highvacuum annealing (HVA) processes were utilized to prevent the stiction failure of the VS-CNT channels and to enable low hysteresis, respectively.

II. DEVICE FABRICATION

The entire fabrication process of the VS-wrap-gated CNT-FETs is illustrated in Fig. 1. A bulk -Si wafer was used as the substrate. Prior to the formation of the CNT channels, fivestory multi-stacked Si-nanowires (Si-NWs) were patterned without stiction problems via a previously reported one-route all-dry-etching process, as shown in Fig. 2 [7]. The five-story Si-NWs serve as a mechanical frame which firmly holds the vertically suspended CNTs. Afterwards, the Si-NWs were fully oxidized by a thermal oxidation process (100 nm of SiO₂). The fully oxidized Si-NWs were then functionalized with an amine-terminated group to support the CNTs, even at all sides of the NWs. Subsequently, the device was immersed in a highly purified, pre-separated 99.9% semiconducting enriched CNT solution (provided by NanoIntegris, Inc.) and dried at 60 °C for 7 hrs. To form the source and drain (S/D) electrodes, a photolithography process based on a negative photoresist (PR) was applied. Stacks composed of Ti (1 nm)/Pd (50 nm)/Au (50 nm) were sequentially deposited by thermal evaporation, followed by a lift-off process. An additional etching step using O2 plasma was utilized selectively to remove the CNTs, which existed on the background bottom surface, so as to block a possible leakage path through the debris of the CNTs. The aforementioned fully oxidized Si-NW frame was partially etched away by HF (Fig. 3) and then completely eliminated by HF (Fig. 4), after which only the CNTs were left as the VS structure. To avoid stiction, which results in the bundling and collapse of the CNTs by surface tension, a critical-point drying (CPD) process was applied. Next, an Al₂O₃ gate dielectric (30 nm) was uniformly deposited by ALD, with the gate metal of Ni (20 nm) then deposited by ALD to realize a fully wrap-gated structure. Afterwards, Al (1 µm) was sputtered for an interconnection

and probing pads. Finally, gate patterning was conducted via a positive PR-based photolithography process and a subsequent wet etching step using an Al etchant. The finalized crosssectional structure as well as the individual components were verified by TEM analyses and energy-dispersive X-ray spectroscopy (EDS) mapping, respectively (Fig. 5). It was observed that the suspended CNTs collapsed and then became bundled (bottom of Fig. 6) when CPD was not utilized. With the CPD process, however, they were well separated without stiction (top of Fig. 6). Henceforth, the former was used as a control group (termed the bundled CNT-FET) and the latter was used as the experimental group (termed the V-suspended CNT-FET). The V-suspended CNT-FET showed a higher device yield than the bundled CNT-FET. There were approximately 20 CNTs in one vertical plane in the VS-wrapgated CNT-FET, whereas fewer than 10 CNTs were noted in the bundled case due to the collapsed CNTs during the etching of the fully oxidized Si-NWs.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Fig. 7 shows ultraviolet-visible near-infrared (UV-vis-NIR) spectroscopy absorption spectra of the 90% (blue trace) and the 99.9% semiconducting nanotube solution (red trace). Notably, the higher S_{22} and S_{33} peaks (semiconducting transition) as well as the lower M₁₁ peak (metallic transition) confirm the high-level purity of the 99.9% semiconducting CNT solution. The transfer characteristics $(I_D - V_G)$ of three differently shaped CNT-FETs, a 2-D planar CNT-FET, the bundled CNT-FET, and the V-suspended CNT-FET, are compared in Fig. 8. The 3-D GAA CNT-FETs (bundled and V-suspended) exhibit a steeper SS and a lower IOFF value compared to those of the 2-D planar CNT due to the inherently high gate controllability, as expected. To ensure a practically useful prediction, I_{ON} was normalized by $W_{footprint}$. Fig. 9 shows a comparison of I_{ON} at an identical gate overdrive voltage considering the difference in the threshold voltage (V_G-V_T) . The V-suspended CNT-FET shows five-fold increase in I_{ON} due to the decreased inter-tube Coulomb interactions and increased number of CNT channels compared to the bundled CNT-FET (Fig. 9). The output characteristics $(I_D - V_D)$ are also compared between the V-suspended CNT-FET and the bundled case, as shown in Fig. 10. The I_{ON} value normalized in terms of the 2-D footprint width (W_{footprint} in Fig. 6), i.e., $I_{measured}/W_{footprint}$, is 15.4 μ A/ μ m. Compared with the SS of the bundled CNT-FET, the SS of V-suspended CNT-FET was reduced by 35%, i.e., 78 mV/dec. (Fig.11). Such an improvement in the SS is attributed to the better gate controllability of the GAA structure, which is an ideal geometry for electrostatics because it provides strong coupling of the gate bias to the CNT channels, and the screening effects arising from the bundled CNT-FET. Moreover, the hysteresis (ΔV_{HYS}) was found to be approximately 30 mV in our Vsuspended CNT-FET (Fig. 11 and Fig. 12). This value is much lower than those of other exploratory channel materials with SiO_2 or high-k gate dielectric materials and is even comparable to that extracted from an advanced MOSFET that consists of high-k gate dielectric and a Si channel. This notably small ΔV_{HYS} is attributed to the high-vacuum

annealing (HVA) treatment, which reduces the number of interface traps [8]. For a more comprehensive understanding of the root cause of the improved electrical characteristics in the V-suspended CNT-FET compared to those in the bundled case, the electric field (E-field) distribution was simulated using a 3-D numerical simulator (COMSOL) (Fig. 13). All device dimensions used in the simulations were extracted from actual TEM images, as shown in Fig. 5. The detailed dimensions and parameters for the simulations are summarized in Fig. 14. In the simulation, a common gate voltage (V_G) of 2.5 V was applied to the gate electrode, and the peak E-field at the suspended CNTs was extracted. The Efield of the V-suspended CNT-FET is increased by a factor of 1.55 compared to that of the bundled CNT-FET. This is caused by the adjacent mutual interference of the neighboring CNTs, which increases the electrostatic coupling from the bundled CNTs. Table 1 summarizes the advantages of the proposed VS-wrap-gated CNT-FET compared to other types of CNT-FETs [3]-[6]. The VS-wrap-gated CNT-FET represents a simpler approach, which helps to realize a more tightly controlled GAA. In this work, it can be concluded that the improved SS and the significantly decreased area of the CNT-FETs increase the energy efficiency of circuit-level devices.

IV. CONCLUSION

In summary, V-suspended and fully wrap-gated CNT-FETs were demonstrated. In order to improve the driving current, vertically suspended channels which occupy a small fraction of the footprint area due to the inherent vertical structure, were utilized. To suppress short-channel effects, a gate-all-around structure was used, which is possible because the CNTs were physically floated and suspended from the bottom substrate. To decrease the off-state leakage current, highly purified single-walled semiconducting CNTs with a purity level of 99.9% were used. VS-CNT channels were realized using multi-stacked Si-NWs, which served as a sacrificial layer to hold the CNTs with the aid of an overall wafer-scale CMOS compatible process. This led to a high driving current of 15.4 µA/µm normalized by the footprint channel width and a steep subthreshold slope of 78 mV/dec. In addition, critical-point drying (CPD) and a high-vacuum annealing (HVA) process provided stiction-free suspended CNTs and low hysteresis. This work demonstrates the feasibility of utilizing emerging low-dimensional materials as promising candidates for post-silicon transistors.

ACKNOWLEDGMENTS

This work was sponsored by the Global Frontier Project (CISS-2011-0031848) and by the Pioneer Research Center Program (2012-0009600).

References

- [1] L. Wei, et al., IEDM, 917-920 (2009).
- [2] L. Chang, et al., "IEDM Short Course," IEDM (2012).
- [3] M. M. Shulaker, et al., *IEDM*, 839-842 (2015).
- [4] M. M. Shulaker, et al., IEDM, 812-815 (2014).
- [5] Q. Cao, et al., Nat. Nanotech., 180-186 (2013).
- [6] A. D. Franklin, et al., IEDM, 84-87 (2012).
- [7] B. H. Lee, et al., Nano Letters, 8056-8061 (2015).
- [8] X. Hua, et al., Small, 2833-2840 (2012).

Fig. 1. Details of the VS-wrap-gated CNT-FETs, including the formation of a fabricated device: (a) Schematic illustration of the VSwrap-gated CNT-FETs on a bulk silicon substrate. The entire process is fully compatible with the silicon-based CMOS process. The wrap-gated structure consists of Al₂O₃ dielectric layers and an ALD metal gate (Ni) surrounding the CNT channels. (b) Optical image of the fully fabricated devices. (c) A 25° tilted SEM image of a fully fabricated device is shown.

vertically stacked silicon nanowire frame. Fully oxidized (SiO₂) layer thickness of 100 nm. Scale bar: 500 nm

stage of suspended CNTs by the partial removal of SiO₂.

using a HF wet etching process. Middle CNTs with the complete removal of SiO₂. Additionally, the CPD process reinforced the vertically suspended channels.

Fig. 5. (a) Schematic of the VS-wrap-gated CNT-FETs along the a-a' Fig. 6. Fabricated VS-wrap-gated CNT-FETs showing an direction. (b) Cross-sectional TEM images showing the well-defined ideal GAA structure geometry. (a) Cross-sectional TEM dielectric and metal gate (Al₂O₃/Ni/Al) wrapping the CNT channels. images showing the dielectric and metal gate (ALD-Ni), (Al) Scale bar: 500 nm (c) EDS mapping analysis of the VS-wrap-gated wrapping the CNT channel width of less than 5 nm. (b) A CNT-FETs captured to analyze the "O" component of Al2O3, the "Al" of bundle-type CNT-FET is also shown as a control group (without the CPD process). Al₂O₃, "Ni" and the "C" of carbon.

Fig. 7. UV-vis-NIR absorption spectra of the 90% semiconducting separated nanotubes (blue trace) and 99.9% semiconducting separated nanotubes (red trace).

Fig. 10. Output $(I_D - V_D)$ characteristics of the CNT-FETs for different gate voltages ranging from 0 V to 2.1 V in 0.3 V steps. That of the VS-wrap-gated CNT-FET is increased by a factor of nearly 5.

(a) Al		(b)		
Al ₂ O ₃		PARAMETER	VALUE	
Cal		Gate	Ni (20 nm)	
	▶ ►	Structure (nm)	X = 50, Y = 100	
•	00 nm	Channel Diameter	CNT (2 nm)	
•		Dielectric Constant	Al ₂ O ₃ Permittivity 7	
		V _G (V)	2.5 V	

Fig. 13. (a) Cross-sectional geometry and 3-D module profile of simulated potential maps using a 3-D numerical simulator (COMSOL) (b) Simulation of the device parameters.

Fig. 8. Transfer $(I_D - V_G)$ characteristics (log scale) of CNT-FETs with different geometric values, $L_{CH} = 1 \ \mu m$ and $W_{CH} = 5$ nm at a drain voltage (V_D) of 0.1 V. I_{ON} normalized by considering W_{CH} as I_{ON}/W_{CH} .

Fig. 11. Comparison of the SS levels for different structure geometries, and the hysteretic results of HVA treatments in CNT-FETs as measured under each condition.

Fig. 14. Plot of the calculated electric field at single CNTs as a function of the geometric dependency. In the comparison of the E-field distribution, the VS-wrapgated CNT-FET is increased by a factor of nearly 1.55.

Fig. 9. Comparison of I_{ON} at identical operation voltages but with a different threshold voltage for each device. The VS-wrap-gated CNT-FET shows that the current drivability is increased by nearly five-fold.

Fig. 12. The hysteretic behavior induced by gate bias sweeping showed a minimal value (inset = $\Delta V_{HYS} < 30 \text{ mV}$), and exceptional stability was achieved. The HVA treatments enable a reduction of the number of interface traps.

Ref.	IEDM 15 [3]	IEDM 14 [4]	Nat. Nano. [5]	IEDM 12 [6]	<u>This</u> work
SWNT purity	99.99%	n/a	98%	Single- CNT	99.9%
S.S	n/a	n/a	150	105	78
I _{ON} /I _{OFF}	10 ³	5 × 10 ³	600	1 0 ⁴	10 5
W _{CH} / Density	1 μm / 200 CNTs	1 μm / 100 CNTs	1 μm / 500 CNTs	2 nm / Single- CNT	5 nm / 20 CNTs
W _{CH} / Density V _D (V)	1 μm / 200 CNTs n/a	1 μm / 100 CNTs 1.0	1 μm / 500 CNTs 0.8	2 nm / Single- CNT 0.5	5 nm / 20 CNTs 0.1

Table. 1. Summary of the demonstrated advantages of the VS-wrap-gated CNT-FETs compared to those in previous reports.