Origin of instability by positive bias stress in amorphous Si-In-Zn-O thin film transistor

Do Hyung Kim, Dong Youn Yoo, Hyun Kwang Jung, Dae Hwan Kim, and Sang Yeol Lee

Citation: Appl. Phys. Lett. 99, 172106 (2011); doi: 10.1063/1.3657511
View online: http://dx.doi.org/10.1063/1.3657511
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v99/i17
Published by the American Institute of Physics.

Related Articles
Time-of-flight measurements and vertical transport in a high electron-mobility polymer

Dissipative quantum transport in silicon nanowires based on Wigner transport equation
J. Appl. Phys. 110, 093710 (2011)

Time-of-flight measurements and vertical transport in a high electron-mobility polymer

Ambipolar organic field effect transistors and inverters with the natural material Tyrian Purple
AIP Advances 1, 042132 (2011)

Influence of Hf contents on interface state properties in a-HfInZnO thin-film transistors with SiNx/SiOx gate dielectrics

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

EXPLORE AIP’s new open-access journal
- Article-level metrics now available
- Join the conversation! Rate & comment on articles

Submit Now
Origin of instability by positive bias stress in amorphous Si-In-Zn-O thin film transistor

Do Hyung Kim,1,2 Dong Youn Yoo,3 Hyun Kwang Jung,4 Dae Hwan Kim,4 and Sang Yeol Lee1,a)

1Department of Semiconductor Engineering, Cheongju University, Cheongju, Chungbuk 360-764, Korea
2Department of Physics, University of Dongguk, Seoul 100-715, South Korea
3Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 130-012, South Korea
4The School of Electrical Engineering, Kookmin University, Seoul 136-702, South Korea

(Received 13 July 2011; accepted 12 October 2011; published online 26 October 2011)

The origin of instability under positive bias stress (PBS) in amorphous Si-In-Zn-O (SIZO) thin film transistor (TFT) with different Si concentration has been investigated by x-ray photoelectron spectroscopy (XPS) and density of states (DOSs) analysis. It is found that stability of SIZO-TFT with 3 wt. % Si under PBS became more deteriorated than that of 1 wt. % Si incorporated SIZO-TFT due to the increased oxygen related trap distributed in energy range from conduction band to ~0.3 eV below the conduction band. The origin of instability under PBS was discussed in terms of oxygen related trap derived from DOSs and XPS analysis. © 2011 American Institute of Physics. [doi:10.1063/1.3657511]

Amorphous oxide semiconductor based thin-film transistors (TFTs) have the significant potential for practical applications in active matrix organic light emitting diode due to their high field effect mobility (μ_{FE}) and additional strong points.1–5 Especially, many groups reported that amorphous Ga-In-Zn-O (GIZO) has high μ_{FE} and good stability under various stress conditions.6,7 Recently, Lee et al.8 reported that amorphous Si-In-Zn-O (SIZO) TFT with high μ_{FE} and good stability compared with that of GIZO-TFT was fabricated at 150 °C, thereby facilitating the realization of high performance flexible electronics.

In this paper, the origin of the instability under positive bias stress (PBS) in SIZO-TFTs with different Si concentration has been investigated by analyzing the x-ray photoelectron spectroscopy (XPS) and density of states (DOSs) extracted from multi-frequency method (MFM) technique.9

Mo, as a gate electrode, was deposited on glass substrate by direct current sputtering method, and then amorphous SIZO active layer was grown by the radio frequency magnetron sputtering method at room temperature on 200 nm thick SiNx as gate insulator (GI). More details of device fabrication were described in our previous work.10 All of SIZO-TFTs were annealed at 150 °C for 1 h in N2 ambient. Transfer characteristics were obtained by using semiconductor parameter analyzer (HP 4145B) in dark and vacuum state of <2 × 10−2 Torr. The gate capacitance measurements (C-V) to extract the DOSs in SIZO-TFT with different Si concentration were performed by using precision LCR meter (Agilent 4284A).

Figure 1 illustrates transfer curves of amorphous SIZO-TFTs with 1 wt. % (1SIZO) and 3 wt. % Si concentration (3SIZO), respectively. Thickness of all SIZO active layers was kept at 55 nm. Their electrical properties, such as the threshold voltage (V_{th}), μ_{FE}, subthreshold swing (SS), and on-off current ratio (I_{on-off} ratio), are summarized in Table I. The μ_{FE} for 3SIZO-TFT was deteriorated compared with that for 1SIZO-TFT. This implies that 3SIZO-TFT has larger trap states below the conduction band edge (E_{c}) than those of 1SIZO-TFT.11,12 To compare interface trap density (N_{it}) of the SIZO-TFTs with different Si concentration, the following equation was used:13

$$N_{iT}^{max} = \frac{SS \log(e)}{kT/q} \left(\frac{e}{C_{ox}} \right) \left(\frac{1}{q} \right) \left(\frac{C_{ox}}{q} \right), \hspace{1cm} (1)$$

where k is the Boltzmann constant, q is the electron charge, e is the base of natural logarithm, C_{ox} is the capacitance per unit area of GI, and T is absolute temperature. The N_{it} of 1SIZO- and 3SIZO-TFT derived from SS values showed about 3.4×10^{12} cm−2 and 2.3×10^{12} cm−2, respectively. Particularly, the V_{th} of 3SIZO-TFT was shifted to further positive direction compared with that of 1SIZO-TFT. This can be attributed to the decrease of oxygen vacancies as shallow donor states due to the increase of strong Si-O bonds or the increase of total trap density in 3SIZO-TFT, which

FIG. 1. (Color online) Transfer curves of SIZO-TFTs with different Si concentrations.

1Electronic mail: sylee@cju.ac.kr. Tel.: 82-43-229-8534. FAX: 82-43-229-8461.
induces the reduction of free electron by charge trapping in SIZO channel layer.10

To investigate the origin of the further positive V_{th} shift in the 3SIZO-TFT as shown in Fig. 1, the DOSs in SIZO-TFTs were extracted from MFM technique using frequency dependent C-V measurement. Figure 2 shows the subgap DOSs of SIZO-TFTs with different Si concentration. Interestingly, the DOS for 3SIZO-TFT was larger than that for 1SIZO-TFT, especially in energy range from E_c to 0.3 eV below the E_c. It was reported that the acceptor-like DOS extracted from MFM technique was originated from the channel/GI interface trap and the bulk trap in the channel layer. Therefore, in terms of the DOSs in SIZO-TFTs, the decrease in l_{FE} and the further positive V_{th} shift of 3SIZO-TFT than those of 1SIZO-TFT can be explained by the increase of total trap density, which is within energy range from E_c to 0.3 eV below E_c, rather than the decrease of oxygen vacancies. It was reported that 1 wt. % Si incorporated in IZO system plays an important role as carrier suppressor and stabilizer. However, in this study, it was found that 3 wt. % Si deteriorates μ_{FE} and increases DOS within energy band gap, implying that Si concentration in IZO system should be optimized for high performances. As one of possible reasons for the difference in DOSs, the structural deformation due to the difference in atomic volume of Si and other cations can be generated when the empty sites of cations are replaced with Si ions. The 3SIZO-TFT can be significantly deformable, resulting in the generation of much more traps than those of 1SIZO-TFT as shown in Fig. 2.

In order to investigate the relationship between the electrical performances and the chemical properties in SIZO-TFTs, the O 1s XPS spectra in SIZO-TFTs have been analyzed. Gaussian fitting was used to de-convolute these O 1s peaks. As shown in Fig. 4, the Zn 2p$_{3/2}$ peak from Zn-O bonds and In 3d$_{5/2}$ peak from In-O bonds in 3SIZO-TFT was shifted to higher binding energy than in 1SIZO-TFT. Interestingly, the In 3d$_{5/2}$ XPS peak in the 3SIZO-TFT showed a remarkable shift in binding energy compared with that of Zn 2p$_{3/2}$ peak. Juan et al. reported that Zr 3d peak in CeZrO$_4$ thin film was shifted to higher binding energy as decreasing oxygen flow rate. Therefore, the peak shift for metal ions in an oxide system to higher binding energy indicates the increase of oxygen related traps due to formation of oxygen deficient state. Based on these results, oxygen related traps in SIZO-TFT result primarily from In-O bonds rather than Zn-O bonds. Hsieh et al. reported that the continuous tail states extending from E_c originate from variation of In-O metal bonding angles, since the E_c of amorphous GIZO is mainly composed of In 5s orbitals. This report supports our observations in which larger DOS originated from In-O bonds of 3SIZO-TFT is mainly found in energy range from E_c to

<table>
<thead>
<tr>
<th>Wt. % of Si in SIZO</th>
<th>V_{th} (V)</th>
<th>μ_{FE} (cm2/Vs)</th>
<th>l_{on-off} ratio</th>
<th>Subthreshold swing (V/decade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1SIZO 0.75</td>
<td>8.52</td>
<td>1.72×10^7</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>3SIZO 5.80</td>
<td>4.69</td>
<td>3.47×10^7</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>

TABLE I. Summarization of electrical properties of SIZO-TFTs with different Si concentrations.

![FIG. 2. (Color online) The DOSs of SIZO-TFTs extracted from MFM technique.](image)

![FIG. 3. (Color online) O 1s XPS spectra of (a) 1SIZO and (b) 3SIZO films.](image)
0.3 eV below E_c. Therefore, it is suggested that the 3SIZO-TFT has larger oxygen related traps originated mainly from In-O bonds than those of 1SIZO-TFT.

Figure 5 shows the V_{th} instability under PBS in SIZO-TFTs with different Si concentration. The bias stress was applied at $V_{GS} = V_{th} = 20$ V and drain to source voltage (V_{DS}) of 10.1 V during 3600 s in vacuum and dark state. As a result, the V_{th} shift (ΔV_{th}) of 1SIZO- and 3SIZO-TFT under PBS was 1.0 V and 5.2 V, respectively. Si contents of 3 wt. % in SIZO-TFT can degrade the stability under PBS and μ_{FE} due to the increased oxygen related traps, which was confirmed by consistency of DOS and XPS analysis. Under our investigations, the origin for the deteriorated V_{th} shift of 3SIZO-TFT under PBS conditions can be oxygen related traps in the channel bulk and at the GI/channel interface. Especially, it is believed that the oxygen related traps originate from In-O bonds in SIZO-TFT.

In summary, it is found that the stability of SIZO-TFT with 3 wt. % Si concentration under PBS was degraded compared with that of 1SIZO-TFT due to the increased oxygen related traps. Also, it is suggested that the oxygen related traps originate primarily from In-O bonds in SIZO-TFT. Consequently, the stability in SIZO-TFT under PBS conditions was very susceptible to variation of Si concentration. Therefore, it is needed to fabricate the SIZO-TFT with optimized Si concentration for its practical usage in terms of the stability.

This work was supported by the IT R&D program of MKE/IITA, Contract No. 82–2–3014–5715 [K1002182, TFT backplane technology for next generation display] as well as the Korea Research Foundation (KRF) grant funded by the Korea government (MEST) (No. 2010-0027759).