Latch-up based bidirectional npn selector for bipolar resistance-change memory
Sungho Kim, Dong-Il Moon, Wei Lu, Dae Hwan Kim, Dong Myong Kim et al.

Citation: Appl. Phys. Lett. 103, 033505 (2013); doi: 10.1063/1.4813832
View online: http://dx.doi.org/10.1063/1.4813832
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v103/i3
Published by the AIP Publishing LLC.

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/about/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT
Latch-up based bidirectional npn selector for bipolar resistance-change memory

Sungho Kim,1,a) Dong-Il Moon,2,a) Wei Lu,1 Dae Hwan Kim,3 Dong Myong Kim,3
Yang-Kyu Choi,2,b) and Sung-Jin Choi3,b)

1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
2Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
3School of Electrical Engineering, Kookmin University, Seoul 136-702, South Korea

(Received 2 June 2013; accepted 28 June 2013; published online 16 July 2013)

A vertically integrated latch-up based n-p-n bidirectional diode, which is analogous to an open-base bipolar junction transistor, is demonstrated for bipolar resistance-change memory selector application. A maximum current density of >50 MA/cm² and a selectivity of >10⁴ are observed at a fast switching speed of within 10 ns. The high selectivity as a consequence of the sudden latch-up process is feasible owing to the positive-feedback process initiated by impact ionization. The optimization of the turn-on voltage is comprehensively investigated by numerical device simulation, which ensures the promising potential of the latch-up based selector device.

© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4813832]

Resistance-change memory (RRAM) has promising attributes in terms of usability in high-speed, nonvolatile electronic memory systems, and is therefore considered to be a potential replacement for the conventional flash memories.1,2 A crossbar-type RRAM array has been proposed and evaluated as a means of achieving high-density storage, owing to its simple architecture and 3D stacking potential.3 However, the intrinsic drawbacks of a passive RRAM crossbar array architecture including parasitic leakage paths through unselected cells and series interconnect resistance are unavoidable, which cannot be completely alleviated through optimization with an operational bias scheme.4 Although the use of transistors as selector devices would represent a near-perfect solution to such problems, they are difficult to fabricate with cell sizes below 6F²,5 thus, eliminating the advantages of the crossbar-type array in terms of high scalability.6

In light of these problems, tremendous technological effort has been devoted to developing a selector device that is integrable into a selector-1 RRAM (1S-1R) configuration crossbar array. Several researchers have proposed various types of selector devices, including complementary resistive switches (CRSs),7 metal-insulator transition materials,8 mixed ionic electronic conduction materials (MIECs),9 Schottky diodes (Ni/TiO₂/Ni),10 and varistor-type bidirectional diodes (Pt/TaOₓ/TiO₂/TaOₓ/Pt).11 For meeting the requirements of the high-density 1S-1R crossbar arrays, the maximum on-current density (Jmax) of a selector device should exceed 10⁷ A/cm² because the reset current of an RRAM is typically greater than 10 μA.12 In addition, the selectivity (defined as the ratio of the currents at the full-read (V READ) and half-read voltages (V READ/2)) are crucial in determining the readout margin where higher selectivity is demanded as far as possible.

Recently, another type of an n-p-n punchthrough-diode-based selector device has been proposed.13 As an advantage of the epitaxial Si layer, improved Jmax performance could be achieved when compared with a polysilicon-based n-p-n diode.14 However, the reported selectivity value is limited to 10³, which is not greater than those of the other types of selector devices. In this study, an improved n-p-n diode is proposed by introducing a latch-up phenomenon. The proposed structure in this study is analogous to that of the aforementioned punchthrough diode; however, higher selectivity can be achieved as a consequence of the sudden latch-up phenomenon. Moreover, the proposed selector device can be fabricated by using conventional dry etching, and its scalability is confirmed up to the size of 22 nm.

Figure 1(a) shows the schematic of the proposed latch-up based n-p-n diode and its process flow. First, a three-step ion implantation process is carried out to form n⁺(doped by phosphorus)-p(doped by boron)-n⁻(doped by phosphorus) stacks. The secondary ion mass spectrometry (SIMS) profile confirms the doping concentration and thickness of each of the stacks as shown in Fig. 1(b). Next, a Si pillar is etched vertically by using an oxide hard mask (Fig. 1(c)), and the diameter of the Si pillar (Dpillar) is further reduced by the sacrificial oxidation process down to 22 nm. An oxide (SiO₂) is deposited by chemical-vapor-deposition (CVD) as an interlayer dielectric (ILD) and flattened by the chemical-mechanical polishing (CMP) process. Further, a via hole is patterned by conventional photolithography. In situ doped n⁺ poly Si is deposited as a top contact, and forming gas anneal is performed as the last step of the device fabrication.

The operation of the proposed latch-up diode can be understood by means of the positive-feedback system, as shown in Fig. 1(d). The latch-up behavior is analogous to the self-latch state in an open-base n-p-n bipolar junction transistor.15,16 When a specific voltage is applied to the collector terminal, excess holes are generated by impact ionization and accumulated in the floating p-type base region. These

---

†S. Kim and D.-I. Moon contributed equally to this work.

‡Authors to whom correspondence should be addressed. Electronic addresses: ykchoi@ee.kaist.ac.kr and sjchoiee@kookmin.ac.kr.
The proposed latch-up diode outperforms the punchthrough diode is approximately $10^3$ with 1 MA/cm² of $J_{max}$. The maximum selectivity of the punchthrough diode and the proposed latch-up diode is shown in Fig. 2(b). The maximum selectivity of both the previously reported punchthrough diode and the proposed latch-up diode. The notable distinction between them is the selectivity and maximum current density.

In this system, instability occurs when the denominator $1 - (M - 1) \cdot \beta$ approaches zero. Figure 2(a) shows the typical current-voltage ($I-V$) characteristics of the proposed latch-up diode. The current flow is suppressed at the low voltage regime because the proposed latch-up diode has higher doped base region than previously reported punchthrough diode. When the voltage level satisfies $(M - 1) \cdot \beta = 1$, the system becomes unstable and causes an abrupt increase in the current, that is, resulting in a latch-up phenomenon. The latch-up phenomenon consequently exhibits a symmetrical (i.e., bidirectional) behavior at both the positive and the negative voltages, because the proposed device has a symmetrical n-p-n structure. In addition, it can be noted that the measured data demonstrate a hysteresis; the latch-up voltage ($V_{on}$) for a forward bias sweep is higher than the latch-down voltage ($V_{off}$) for a reverse bias sweep. The device remains latched-up with a large amount of current for as long as the positive-feedback process continues; therefore, the device does not turn off until the voltage falls below $V_{off}$.

The clear distinction between the previously reported punchthrough diode and the proposed latch-up diode is shown in Fig. 2(b). The maximum selectivity of the punchthrough diode is approximately $10^3$ with 1 MA/cm² of $J_{max}$. The proposed latch-up diode outperforms the punchthrough diode. Its maximum selectivity is $3 \times 10^4$ with 53 MA/cm² of $J_{max}$, which are approximately 10 times greater than those of the punchthrough diode. The latch-up phenomenon allows a sudden increment in the current at a specific voltage ($V_{on}$), which facilitates a higher selectivity. Furthermore, higher $J_{max}$ is feasible, when compared with the punchthrough diode, owing to the amplified current by the current gain ($\beta$). Consequently, excellent performance of the n-p-n diode can be achieved by adjusting the latch-up mechanism without an elaborate epitaxial process; the Si-based n-p-n latch-up diode, which is fabricated by using the conventional CMOS process, can be a promising candidate for the 1S-1R crossbar array. In addition, Fig. 3(a) shows the time-resolved latch-up behavior of the proposed device as well as the schematic of the measurement system. As can be observed from Fig. 3(a), the latch-up process occurs within 10 ns corresponding to an input pulse (rising/falling times = 3 ns, pulse width = 10 ns). At $V_{appl} = 6$ V (for on-state), a turn-on current response at a switching speed 10 ns is observed, while no response is

FIG. 1. (a) Process flow for the latch-up based n-p-n diode and schematic of the vertically integrated proposed device. (b) The SIMS profile is depicted in the vertical direction. The doping concentration is controlled by the ion implantation process (three-step implantation). The base length ($L_{base}$) is approximately 150 nm. (c) Tilted scanning electron microscope (SEM) image of as-fabricated vertical Si pillars and transmission electron microscopy (TEM) images of a latch-up diode. Diameter ($D_{pillar}$) and height of the Si pillar are 22 nm and 500 nm, respectively. (d) Schematic explaining the latch-up conditions. The base current ($I_B$) originating from impact ionization leads to a positive-feedback process.
measured at $V_{app} \approx 3$ V (off-state). Moreover, excellent pulse endurance property is confirmed, as shown in Fig. 3(b).

A negligible degradation of current at $V_{READ}$ and $1/2V_{READ}$ during the successive $10^{12}$ pulse endurance test indicates a highly reliable selection property of the proposed device.

One challenging issue with the proposed latch-up diode is its high operating voltage because the latch-up mechanism is governed by impact ionization. Nevertheless, the latch-up voltage ($V_{on}$) can be reduced by optimizing the latch-up condition. If the common-emitter current gain ($\beta$) and multiplication factor ($M$) are increased, $V_{on}$ can be reduced. Current gain ($\beta$) is increased when the hole diffusion current is suppressed by the valence-band offset at the emitter-base junction. Moreover, the smaller energy bandgap of the base enhances the impact ionization rate at the given voltage. Therefore, a higher valence-band offset at the emitter-base junction with a smaller bandgap of the base can decrease $V_{on}$. Figure 4(a) shows the numerical device simulation (TCAD) results when Si$_{1-x}$Ge$_x$ is introduced as a base material. As the Ge fraction in the Si$_{1-x}$Ge$_x$ alloy increases, the bandgap of the base region reduces. Accordingly, the required latch-up voltage can be reduced by the enhancement of both $M$ and $\beta$. In addition, $V_{on}$ is analyzed for different device dimensions, as shown in Fig. 4(b). A shortened base length ($L_{base}$) reduces $V_{on}$ by virtue of the enhanced $\beta$; however, the narrowed $D_{pillar}$ acts adversely on the decrement of $V_{on}$ because the non-local effect can decrease the impact ionization rates (i.e., $M$ value), even though a narrow pillar causes reduction in the hole diffusion current. $^{17,18}$

In conclusion, a vertical latch-up based n-p-n diode was proposed for a bipolar RRAM selector. $J_{max}$ of $>50$ MA/cm$^2$ and a selectivity of $3 \times 10^8$ were observed, which are attributed to the introduction of the latch-up phenomenon. These values were higher than those observed in the previously reported n-p-n punchthrough diode. The performance of the latch-up diode was measured with a size of 22 nm, which confirms the scalability of the proposed device. The optimization of the turn-on voltage was investigated by numerical device simulation, which ensures the promising potential of the proposed selector device. In comparison with the other types of selector devices, the proposed latch-up based n-p-n selector device achieved excellent performance, particularly high selectivity and maximum current density.

This work was supported by the new faculty research program 2013 of Kookmin University in Korea and in part by the Nano Material Technology Development Program (No. 2011-0030228) and the Mid-career Researcher Program (No. 2012-0000147) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, the Center for Integrated Smart Sensors funded by the Ministry of Education, Science and Technology as Global Frontier Project under Grant CISS-2012M3A6A6054187, Samsung Electronics Company, Ltd., and SK Hynix Semiconductor Inc.