Density-of-States Based Numerical and Analytical Models for Solution-Processed Polymer TFTs

Jaeman Jang, Jaewook Lee, Hyeongjung Kim, Sung-Jin Choi, Dong Myong Kim, and Dae Hwan Kim

School of Electrical Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Korea

Abstract

In this work, we propose the subgap density-of-states (DOS) based design platform for solution-processed polymer-based thin-film-transistors (PTFTs). For the model simulation, numerical and analytical I-V models were established from experimentally extracted DOS parameters, and verified by comparing the simulation result with the measured characteristics of solution-processed PTFTs.

Keywords: solution process; organic; polymer; thin-film transistors; density-of-states; analytical model; circuit simulation.

1. Introduction

A great deal of attention has been paid recently to organic electronics, driven by their potential applications throughout from flexible displays [1], large area sensors [2], and radio frequency identification tags [3] to flexible processors [4] and customized programmable logics [5]. In these approaches, polymer-based thin-film-transistors (PTFTs) are the fundamental building blocks with their advantages of low-cost, low-temperature process, and compatibility with the solution process such as spin-coating, ink-jet printing, and gravure printing. However, the circuit simulation method for the solution processed PTFTs has been rarely researched yet while a number of OTFTs with high field-effect mobility higher than 0.1 cm²/V·s have been reported using ink-jet printing [6], [7]. As their potential application becomes more diverse and challenging, the demand for device-circuit co-design, which should be described preferably only with the process/material-controlled and experimentally extracted parameters rather than fitting parameters, becomes indispensable in the solution-processed organic integrated circuits. In this work, we developed the numerical and analytical PTFT models based on the process-controlled parameters including subgap density-of-states (DOS; g(E)).

2. Device fabrication and structure

The polymer-based organic semiconductor was dissolved in tetrahydronaphthalene (THN) at a concentration of 0.2 wt%, and then ink-jet printed via Dimatix printer. The fabricated PTFTs with a coplanar structure had the channel width (W)=120 μm, the gate-to-source/drain (S/D) overlap length (LOV)=10 μm, gate insulator thickness (TOX)=300 nm, and thickness of polymer film (TPolymer)=50 nm (confirmed by FIB-SEM), respectively. Fig. 1(a) shows an array of semitransparent polymer transistors printed on a glass substrate. Fig. 1(b) shows a schematic cross-sectional view of the PTFT with a coplanar structure.

![Fig. 1. (a) A photograph of PTFTs and circuit integrated on a glass wafer. (b) A schematic illustration of the integrated PTFT with the bottom gate and bottom source/drain contact structure (with a coupled-Schottky diode model).](image)

3. Density-of-states Based numerical and analytical models

Fig. 2 shows a schematic illustration of g(E) in polymer thin-film materials. The g(E) is comprised of the donor-like states (gD(E)), shallow acceptor-
like states \((g_{SA}(E)) \), and interface trap \((D_d(E)) \). The \(g(E) \) modeled by a superposition of exponential tail and deep states and Gaussian shallow states as follows:

\[
g(E) = g_{tr}(E) + g_{sa}(E) + g_{sh}(E) = \sum_{i=1}^{N_{\text{tr}}} \exp \left(\frac{E - E_i}{\Delta E_i} \right) + \sum_{i=1}^{N_{\text{sa}}} \exp \left(\frac{E - E_i}{\Delta E_i} \right) + \sum_{i=1}^{N_{\text{sh}}} \exp \left(\frac{E - E_i}{\Delta E_i} \right) \]

(1)

Fig. 2. A schematic illustration of \(g(E) \) of the polymer material. It consists of donor-like DOS; \(g_{DA}(E) \) (it is extracted from the MFCV spectroscopy) and the shallow acceptor-like DOS; \(g_{SA}(E) \) (it is extracted from a fitting with measured data by numerical model simulation.). The inset shows a schematic illustration of the interface trap density, \(D_d(E) \).

Fig. 3. Extraction of \(g_{tr}(E) \) using the MFCV spectroscopy
(a) The calculated \(C_{GSS} \) from \(f \)-dependent \(C_{GSS} \) characteristics is shown as an inset. (b) Extracted \(V_{GS} \)-dependent \(R_S \) obtained from the high frequency \(Z_{\text{meas}} \) under a fixed \(V_{GS} \) as shown in the inset. (c) Extracted \(g_{tr}(E) \).

The extraction procedure of \(g_{tr}(E) \) by the Multi-frequency C-V (MFCV) spectroscopy is shown in Fig. 3. This method has been published in the [8]. Fig. 4 shows the calculation flow about numerical and analytical current-voltage \((I-V) \) models. The models start with \(g_{tr}(E) \) obtained by the MFCV spectroscopy. As shown in Fig. 4 (a) Numerical models are based on physics-based parameters not fitting parameters. The \(g_{tr}(E) \) was experimentally extracted, while \(g_{SA}(E) \) and \(D_d(E) \) were extracted from the numerical iteration. The proposed numerical model is expected to be a useful platform for systematic design of PTFTs via the material/process optimization.

Fig. 4. The calculation flow for the numerical & analytical \(I-V \) models with same parameters \((g_{tr}(E), \mu_{\text{band}}, N_V) \). (a) Numerical model flow: TFT’s structural parameters are given as \(W, L, T_{\text{Polymer}}, T_{\text{OX}} \). The \(g_{tr}(E) \) experimentally extracted then the other parameters \((N_V, \mu_{\text{band}}) \) are determined. The \(V_{FB} \) & \(E_{\text{tr}} \) are calculated with the potential obtained from the 1-D field solver. (b) Analytical model flow: The input parameters \((P_{\text{on}}=N_{1D}, kT_{\text{on}}=kT_{\text{D}}, W, L, T_{\text{OX}}, \text{Schottky barrier}(\theta_i)) \) are fixed by known or extracted value. Through the Gauss’ law, calculate the surface potential and then calculate \(I_{\text{DS}} \).

On the other hand, as shown in Fig. 4 (b) the analytical model is based on the effective carrier density combined with a coupled-Schottky diode model (in Fig. 1 (b)) for the non-linearity and the Poole-Frenkel mobility model for the lateral field-dependent carrier transport. We expect that the proposed analytical model can be employed for a fast and efficient circuit design. We obtain an analytical model for drain current caused by the drift of holes in the channel as

\[
I_{\text{DS}}(N_{1D}, kT_{\text{D}}) = \frac{W}{L} \mu_{\text{band}} e^{V_{GS}^{\text{ref}}} \left[\frac{C_{GS}}{2P_{\text{on}} kT_{\text{D}}} \chi^{2} \right] \left[\frac{1}{2} \left(\chi^{2} - \frac{1}{\chi^{2}} \right) \right] \frac{1}{kT_{\text{D}}} \left(V_{GS} - V_{TH}^\alpha - \phi_d^{\alpha} \right) \frac{1}{e^{\frac{\alpha}{kT_{\text{D}}}} - 1} \]

(2)

And from the Schottky diode current equation is

\[
I_{\text{Schottky}} = A A^* T^2 e^{-\varphi_d/kT} \left(e^{\varphi_d/kT} - 1 \right)
\]

(3)

Finally, the total drain current over the sub- and above-\(V_I \) regions for the PTFT modeled as a series connection of the Schottky diodes at S/D contacts with the \(V_{GS} \)-dependent channel resistance can be described by

\[
I_{\text{DS}} = I_{\text{DS, sub}}(P_{\text{on}}, kT_{\text{D}}) + I_{\text{DS, above}}(P_{\text{on}}, kT_{\text{D}}) + I_{\text{Schottky}}
\]

(4)
device characteristics because most of all parameters relationship between the process/material and the also made it possible to co-design with the definite controlled parameters including DOS. Our approach for solution-processed PTFTs based on the process-controlled parameters including DOS. Our approach also made it possible to co-design with the definite relationship between the process/material and the device characteristics because most of all parameters

4. Conclusion

We reported analytical and numerical I-V models for solution-processed PTFTs based on the process-controlled parameters including DOS. Our approach also made it possible to co-design with the definite relationship between the process/material and the device characteristics because most of all parameters can be controlled by either the process or the material.

5. Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) (Grant no. 2012-0000147). The devices were supported by Samsung Advanced Institute of Technology (SAIT).

References