Frequency-dependent C-V Based Extraction of Interface Trap Density in Normally-off Gate-recessed AlGaN/GaN Field-effect Transistors

Sungju Choi†, Youngjin Kang‡, Jonghwa Kim†, Sung-Jin Choi†, Dong Myong Kim†, Ho-Young Cha‡, Hyungtak Kim‡, and Dae Hwan Kim†§

†School of Electrical Engineering, Kookmin University, Seoul 136-702, Korea
‡School of Electronic and Electrical Engineering, Hongik University, Seoul 121-791, Korea
E-mail : §drlife@kookmin.ac.kr

Abstract

The exact extraction of interface trap density (Dit) is very important especially in the gate-recessed MOS structure which is a promising approach for normally-off AlGaN/GaN field-effect transistors (FETs). In addition, the efficient C-V model should be precisely established including the frequency-dependence in AlGaN/GaN FETs because they are developed mainly for high speed applications. Here, the extraction of Dit is demonstrated in the normally-off gate-recessed AlGaN/GaN FETs and its result is compared with that of a conventional conductance method. The proposed method is not only simpler than the conductance method along with the same precision but also useful in a simple C-V model for AlGaN/GaN FETs.

Keywords: Normally-off, gate-recessed, AlGaN/GaN FETs, interface trap density, frequency-dependent C-V

1. Introduction

GaN-based high electron mobility transistors (HEMTs) have been attractive candidates for high power, high frequency application under high temperature due to its beneficial features, such as maximum frequency of oscillations, low specific on-resistance, and high breakdown voltage. It should be also noticed that the normally-off operation of GaN-based devices is important for commercializing the CMOS circuit-based applications [1]. The gate-recessed metal-oxide-semiconductor (MOS) structured AlGaN/GaN field-effect transistors (FETs) is a promising candidate for the normally-off GaN-based HEMT with advantages such as a thin barrier layer, low gate leakage, gate swing, low turn on voltage and high breakdown voltage [2]. However, the interface trap density (Dit) should be exactly characterized especially in the gate-recessed AlGaN/GaN FETs because they would undergo the etching damage-induced trap generation in each interfacial layer, which would evoke the degradation of device performance as well as serious instability.

In this work, we demonstrate the Dit extraction by using the frequency-dependence of capacitance-voltage (C-V) characteristics in the gate-recessed normally-off AlGaN/GaN FETs. The proposed frequency-dependent C-V method (FDCM) is very useful in an efficient C-V model for AlGaN/GaN FETs because it supplies the frequency-independent bias-dependent capacitance components while the extracted Dit is consistent with that extracted from a conventional conductance method (CM) [3].

2. Result and Discussion

The used normally-off gate-recessed AlGaN/GaN FETs were integrated on a Si substrate as shown in Fig. 1(a). Fig. 1(b) shows the measured frequency-dependent C-V curve with various small-signal frequencies.

The result was derived from the observation through frequency dependence of capture-emission events caused by the interface and/or bulk traps as well as parasitic source/drain resistance (R_s). The model and physical assumption is similar to [4]. Both the parallel
mode capacitance \((C_P) \) and the resistance \((R_P) \) can be measured as a function of the gate voltage \((V_g) \) under various frequencies as shown in Fig. 2(a). Then, the \(C_{ox} \) and \(R_s \) can be de-embedded in the four-element model in Fig. 2(b). The \(Z_M \) in the two-element model and \(Z_p \) in the four-element model are individually obtained by

\[
Z_M = \frac{R_M}{1 + \left(\omega C_{M} R_M^2 \right)^2} - \frac{j \omega C_{M} R_M^2}{1 + \left(\omega C_{M} R_M^2 \right)^2} \tag{1}
\]

\[
Z_p = R_s + \frac{R_p}{1 + \left(\omega C_{p} R_p^2 \right)^2} \left[\frac{\omega C_{p} R_p^2 + 1}{1 + \left(\omega C_{M} R_M^2 \right)^2} \right] \tag{2}
\]

In addition, the \(R_s \) can be determined from the measured accumulation impedance at high frequency \((f=1 \text{ MHz in our case}) \) [3]:

\[
R_s = \frac{R_{M,a}}{1 + \left(\omega C_{M,a} R_{M,a} \right)^2} \tag{3}
\]

Thus, we can obtain the \(R_p \) and \(C_p \) as functions of experimentally acquired \(C_{ox} \) and \(R_M \) by using \(Z_M = Z_p \).

![Fig. 2. (a) Equivalent circuit for the parallel mode impedance analyzer, (b) four-element model for the effective capacitance \((C_{EFF}) \) and series resistance \((R_s) \), (c) physics-based five-element model for frequency-dispersive \(C-V \) characteristics, (d) equivalent model for \(f \)-independent \(C_{EFF} \), \(C_{GaN} \), \(C_{it} \), and (e) the \(R_s \) versus \(V_{GS} \) curve with the inset figure of the \(R_s \) versus frequency.](image)

The following is the four-element model, which is transformed into the five-element model reflected in the interface trap model as shown in Fig. 2(c). The channel impedance \(Z_{CH} \) is composed of \(R_{it} \), \(C_{it} \), and \(C_{GaN} \). By using \(Z_{CH} = Z_p \), \(R_{it} \) is obtained as follows.

\[
R_{it} = \frac{\omega^2 C_{it} R_p^2 \left(C_u + C_{GaN} \right) \left(C_u + C_{GaN} - C_p \right)}{\omega^2 C_{it}^2 C_{GaN} \left[1 + \omega^2 C_{it} R_p^2 \left(C_p - C_{GaN} \right) \right] - \omega^2 C_{it} R_p^2 C_{GaN} \left[1 + \omega^2 C_{it} R_p^2 \left(C_p - C_{GaN} \right) \right] } \tag{4}
\]

Then, using the relation of \(R_{it}(\omega_1) = R_{it}(\omega_2) = R_{it}(\omega_3) \), we can obtain the \(C_{EFF} \), \(C_{it} \), and \(C_{GaN} \) as well as the \(f \)-independent \(C_p \) [Fig. 3(a)]. Finally, the \(D_a \) can be finally extracted by \(C_{eff}(V_g) = q^2 \times D_a(V_g) \times W \) as shown in Fig. 3(b). Here, the \(D_a(V_g) \) was transformed into \(D_a(E) \) by using the \(f \)-independent \(C_p \). The FDCM-based \(D_a(E) \) was verified to be consistent with the CM-based \(D_a(E) \) [Fig. 3(b)]. Furthermore, the FDCM is much simpler than CM because the former requires only three different \(f \) conditions while the latter many different \(f \) conditions.

![Fig. 3. (a) The extracted \(C_{eff(f-independent)} \), \(C_{EFF} \), and \(C_{GaN} \), (b) The extracted \(D_a(E) \) with the inset of semi-log plot.](image)

3. Conclusion

The \(D_a(E) \) of normally-off gate-recessed AlGaN/GaN FETs was successfully extracted by using FDCM. The proposed method is not only more efficient than a conventional CM along with the same precision but also very useful in a simple \(C-V \) model for AlGaN/GaN FETs.

Acknowledgements

This work was supported by National Research Foundation of Korea through the Ministry of Education, Science and Technology (Grant No. 2013R1A1A2013100) and the Ministry of Science, ICT and Future Planning (Grant No. 2013R1A1A2065339), in part by BK+ with the Educational Research Team for Creative Engineers on Material-Device-Circuit Co-Design under Grant 222A20130000042.

References