Characterization of Interface States in MOS Systems by Using Photonic High-Frequency Capacitance-Voltage Responses

School of Electrical Engineering, Kookmin University, Seoul 136-702

(Received 23 April 2002)

Keywords: MOS, Interface trap density (Dit), Photonic C-V, C-V

PACS numbers: 85.30.De

II. INTERFACE STATE CHARACTERIZATION USING THE PHOTONIC HIGH FREQUENCY C-V CHARACTERISTICS OF MOS CAPACITORS

As shown in Fig. 1, the photonic HF-CV characteristics of MOS capacitors with \(t_{ox} = 23 \) nm and \(W \times L = 300 \times 300 \) \(\mu \)m\(^2\) were measured for a small signal frequency, \(f = 500 \) kHz, and at a slow DC sweep rate, 1 mV/s. Due to the limited contribution of photogenerated excess channel carriers only from the interface states at the Si/SiO\(_2\) interface under illumination with light having a wavelength of \(\lambda = 1314.5 \) nm, the gate capacitance in the inversion mode \(|V_G| > |V_T|\) increases little and shows a negligible variation with increasing optical power \(P_{opt}\). However, due to the abundant contribution of photogenerated excess carriers from the valence band to the conduction band under irradiation at a wavelength of \(\lambda = 850 \) nm, the gate capacitance in the inversion region is significantly increased, but its variation with increasing \(P_{opt}\) is negligible. Therefore, the slow sweep-rate HF-CV characteristics of a MOS capacitor under optical illumination is not suitable for the characterization when \(E_{ph} > E_g \) or \(E_{ph} < E_g \).

The photonic DD HF-CV characteristics were measured with the same small signal-frequency, \(f = 500 \) kHz, and fast DC sweep rate, 50 mV/s. The equivalent circuit model of a MOS capacitor under deep-depletion high-frequency conditions can be described by

\[
\frac{1}{C_G} = \frac{1}{C_{OX}} + \frac{1}{C_d} \tag{1}
\]

with an equivalent model as shown in Fig. 2 [6]. Without an optical input, we may assume \(C_{OI} = C_{OT} = 0 \). The

E-mail: dmkim@kookmin.ac.kr; Fax: +82-2-910-4449
Characterization of Interface States in MOS Systems by S. J. Song et al.

Fig. 1. Photonic HF-CV characteristics of MOS capacitors under optical illumination ($\lambda = 1314.5$ nm, 850 nm): (a) NMOS capacitor and (b) PMOS capacitor.

![Photonic HF-CV Characteristics](image1)

$$\phi_s = \pm \frac{qN_e \varepsilon_s \varepsilon_0}{2} \left(\frac{C_{OX} - C_G}{C_{OX}C_G} \right)^2, \quad (2)$$

can be obtained from the measured DD HF-CV curve as a function of the gate bias. Extracted surface potentials for P- and N-MOS capacitors are shown in Fig. 3.

Photonic DD HF-CV curves for an optical input with $\lambda = 1314.5$ nm are shown in Fig. 4. Due to the photogeneration and to the contribution of excess carriers excited from the interface states at the Si/SiO$_2$ interface, the gate capacitance in the inversion region increases with increasing P_{opt}. Under a fast DC sweep rate (50 mV/s), which is fast enough that the ramping time is shorter than the minority-carrier response time, insufficient time exists for the photogenerated excess carriers.
under optical input, is given by the photogenerated carriers from the interface states and P-MOS capacitors. Using the above derivation, we can also obtain a distribution of the interface state density \(D_{it} \) which can be described by [2]

\[
D_{it} = \frac{C_{it}}{q}
\]

(6)

As shown in Figure 6, by using the photonic DD HF-CV method with \(E_{ph} < E_g \), we characterized MOS capacitors with \(E_{ph} (\lambda = 850 \text{ nm}) \) and \(E_g \) and we show the result in Fig. 7. Conversely to the C-V characteristics obtained for \(\lambda = 1314.5 \text{ nm} \) with the same measurement setup, DD HF-CV characteristics are predominantly controlled by the excess carriers from the band-to-band photogeneration in the bulk (\(E_{ph} > E_g \)). The photonic DD HF-CV response of the interface states under an optical input with \(\lambda = 850 \text{ nm} \) is fully screened by the abundant photogenerated excess inversion carriers. Therefore, photonic the DD HF-CV response and its physical mechanisms caused by the interface states are mainly governed by the photogenerated excess carriers from the interface states; therefore, the DD HF-CV response is effective for the characterization of \(D_{it} \) in MOS capacitors.

III. CONCLUSION

Fig. 6. Interface trap density in NMOS and PMOS capacitors.
Characterization of Interface States in MOS Systems by S. J. Song et al.

Fig. 7. Photonic DD HF-CV characteristics with $\lambda = 850$ nm: (a) NMOS capacitor and (b) PMOS capacitor.

Based on the photonic deep-depletion high-frequency C-V characteristics of MOS capacitors under an optical input with $\lambda = 1314.5$ nm, we obtained a U-shaped distribution for D_{it} in the photo-responsive energy range. We believe that the photonic DD HF-CV method to be useful for characterizing the interface states in the Si/SiO$_2$ interface.

ACKNOWLEDGMENTS

This work was supported by Korean Ministry of Information and Communication.

REFERENCES