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The positive gate-bias temperature stress (PBTS)-induced instability in top gate self-aligned coplanar InGaZnO 

thin-film transistors (TFTs)
1,2
 is experimentally decomposed into contributions of distinct mechanisms by 

combining the stress-time-divided measurements and the extraction of subgap density-of-states (DOS) from the 

optical response of C-V characteristics. It is found that a total threshold voltage shift (ΔVT,tot) under PBTS is 

decomposed into three mechanisms: 1) increase of DOS due to excess oxygen in the active region (ΔVT,DOS), 2) 

shallow (ΔVT,shallow) and 3) deep charge trapping in the gate insulator components (ΔVT,deep). The procedure of 

decomposition is illustrated in Fig. 1(a)~(c) and experimentally decomposed ΔVT,DOS, ΔVT,shallow, and ΔVT,deep are 

plotted as a function of the stress time (tstr), as denoted by the symbols in Fig. 1(d). Fig. 1(e) shows the contribution 

percentage of each component to the PBTS ΔVT,tot after tstr=10
4
 s at varying temperatures of 27, 60, 100 °C. The lines 

in Fig. 1(d) show that all of ΔVT,DOS, ΔVT,shallow, and ΔVT,deep are well fitted with the stretched-exponential (SE) 

functions with individual parameters and the ΔVT,tot(t) is well described by the superposition of multiple SE 

functions. The effective activation energy is found to be 0.75, 0.40, 0.90 eV for the ΔVT,DOS, ΔVT,shallow, and ΔVT,deep, 

respectively. 

Our results can be easily applied universally to any device with any stress conditions, along with guidelines for 

joint optimization of the dielectrics, the active layer, and the interfaces towards ultimate PBTS stability.  
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Fig. 1. Schematics illustrating (a) the procedure of decomposition of PBTS ΔVT,tot, (b) the stress-time-

divided measurement, and (c) finally decomposed ΔVT as the function of tstr. (d) Experimentally 

decomposed ΔVT(tstr) (symbols) and model fitted with the SE function (lines). (e) Contribution percentage 

of each ΔVT components at several temperatures. 
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