

[WP1-51]

Carbon nanotube and MoS₂ hybrid film for high performance flexible gas sensor

Sung Ho Kim, Sung Myung, Wooseok Song, Jongsun Lim, Sun Sook Lee Ki-seok An

Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea

(E-mail: ksho0817@krict.re.kr)

There are many interests in chemical sensors with low dimensional materials such as graphene, single-walled carbon nanotube (swCNT) and molybdenum disulphide (MOS_2). We fabricated a novel MOS_2 and swCNT hybrid film which applied to chemical gas sensor with excellent flexibility for the highly-sensitive detection of specific gases. We believe that the hybrid film exhibited the higher gas sensing performance compared to the pristine MOS_2 . Because the hybrid film was a significantly enhanced surface area compared to pristine MOS_2 . In addition, a hybrid film was able to apply to flexible devices, such as gas sensors and transistors. Confirmed from our measurements, the film has a high sensitivity to NO_2 and NH_3 , as well as its excellent flexibility through the bending test. Our results suggest that a hybrid film showed a possibility that can be used as a flexible sensor in the future.

[WP1-52]

Fabrication of In-Rich()0.53) InGaAs-OI on Si by Novel Epitaxial Lift-Off

Seong Kwang Kim^{1,2}, Jae-Phil Shim¹, Dae-Myeong Geum^{1,3}, Chang Zoo Kim⁴, Han-Sung Kim¹, Yeon-Su Kim¹, Hang-Kyu Kang¹, Jin-Dong Song¹, Sung-Jin Choi², Dae Hwan Kim², Won Jun Choi¹, Hyung-jun Kim¹, Dong Myong Kim^{2*} and SangHyeon Kim^{1*}

¹Korea Institute of Science and Technology, Korea, ²School of Electrical Engineering, Kookmin University, Korea ³Department of Materials Science and Engineering, Seoul National University, Korea, ⁴Korea Advanced Nano Fab Center, Korea

(E-mail: sh-kim@kist.re.kr, dmkim@kookmin.ac.kr)

An In-rich InGaAs is expected to be the most attractive channel for the next-node transistors due to their high electron mobility. Recent studies demonstrated high performance InGaAs MOSFETs with highly scalable device structure such as nanowire, fin, and ultra-thin-body (UTB). Meanwhile, from a viewpoint of the mass-production, the current key issue is a cost-effective integration of III-V materials on a Si platform. There were many attempts such as direct growth on Si [1], direct wafer bonding (DWB) [2], and aspect ratio trapping [3]. However, growth-based methods suffer from the defect control due to the large lattice mismatch between III-V and Si. The DWB is a promising technique for good epitaxial quality, whereas many studies use high cost process such as etch-out of the donor substrate.

In this study, $In_{0.53}Ga_{0.47}As$ -OI/Si wafer was fabricated by DWB and epitaxial lift-off (ELO) as shown in Fig. 1. First, $In_{0.53}Ga_{0.47}As$ (15 nm, undoped)/AlAs (sacrificial layers) layers were epitaxially grown on InP(100) substrate by MOCVD. The thickness of AlAs (T_{AlAs}) was varied between 0 and 10-nm in order to explore the InGaAs quality and the ELO time. Subsequently, a 10-nm-thick Y₂O₃ layer was deposited both on III-V(In_{0.53}Ga_{0.47}As/AlAs/InP) and Si wafers. Prior to DWB, the donor wafers were pre-patterned for a fast ELO via efficient gas bubble release and increase of the exposed etching area. Here, the pattern size was fixed to be 100 \Leftrightarrow 100 µm². Then, Y₂O₃/In_{0.53}Ga_{0.47}As/AlAs/InP substrate and Y₂O₃/Si substrate were directly bonded to each other. Finally, In_{0.53}Ga_{0.47}As-OI/Si substrates and InP donor wafer were separated by the selective etching of the AlAs layer in HF solutions. After DWB and ELO process, the Raman spectra of In_{0.53}Ga_{0.47}As /Y₂O₃/Si substrate shows both sharp peaks of In_{0.53}Ga_{0.47}As and Si, indicating successful fabrication of high-quality III-V-OI/Si as shown in Fig. 2. The cross-sectional TEM images of fabricated In_{0.53}Ga_{0.47}As-OI on Si substrate evidently represent excellent crystal quality and bonding interface, resulting in the successful DWB as shown in Fig. 3.

