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pattern recognition applications. However, 
the emulation of deep learning algorithms 
in conventional digital computing systems 
requires a significant energy consump-
tion[3] due to the intrinsic drawback of 
current digital computing systems (i.e., 
the limited data transfer rate between the 
memory and the central processing unit 
(referred to as the von Neumann bottle-
neck)). Therefore, highly energy-efficient 
computing system architectures are one 
of the key aspects in the emerging com-
puting paradigm, along with the devel-
opment of software algorithms (such as 
machine learning). The capabilities of 
future computing systems should involve 
recognizing, performing computations, 
and responding in real time to big data.

Neuromorphic systems are expected to 
break through the von Neumann bottle-
neck, which is deriving inspiration from 

the biological neural system.[4] Interestingly, the neuromorphic 
system has the memory and the processing units coexisting at 
the same physical location. More precisely, the processing and 
storing of information can be simultaneously performed by 
modulating the connection strength of the synaptic device (i.e., 
synaptic weight) following the appropriate learning rules (e.g., 
spike-timing-dependent plasticity (STDP)[5]). Since the syn-
aptic device is the most abundant and a key functional element 
of the neuromorphic system, considerable research efforts 
have been made to implement an artificial synaptic device by 
exploiting emerging analog-type resistive switching devices 
based on two-terminal (typically known as memristors)[6–11] or 
three-terminal[12–14] structures. Furthermore, primitive levels 
of functional neuromorphic systems have been experimen-
tally demonstrated for the applications of pattern classifica-
tion,[15] analog-to-digital conversion,[16] principal component 
analysis,[17] sparse coding calculations,[18] and unsupervised 
learning system.[19,20]

However, the implementation of a functional neuromorphic 
system is still very challenging, particularly with the under-
standing of how the characteristics of the single synaptic device 
affect the performance of the entire system. Since the perfor-
mance of the system depends on the architecture, the learning 
rules as well as the synaptic device functionalities, a quantita-
tive device-to-system level analysis that takes into account all 
of these is indispensable. Nevertheless, most previous studies 
have been limited to the single device-level analysis.[6–14] 

For the efficient recognition and classification of numerous images, neuroin-
spired deep learning algorithms have demonstrated their substantial perfor-
mance. Nevertheless, current deep learning algorithms that are performed 
on von Neumann machines face significant limitations due to their inherent 
inefficient energy consumption. Thus, alternative approaches (i.e., neuromor-
phic systems) are expected to provide more energy-efficient computing units. 
However, the implementation of the neuromorphic system is still challenging 
due to the uncertain impacts of synaptic device specifications on system per-
formance. Moreover, only few studies are reported how to implement feature 
extraction algorithms on the neuromorphic system. Here, a synaptic device 
network architecture with a feature extraction algorithm inspired by the con-
volutional neural network is demonstrated. Its pattern recognition efficacy  
is validated using a device-to-system level simulation. The network can clas-
sify handwritten digits at up to a 90% recognition rate despite using fewer 
synaptic devices than the architecture without feature extraction.

Synaptic Devices

1. Introduction

Recently, deep learning algorithms have made substantial 
advances. They have surpassed other machine learning algo-
rithms, especially in the fields of image recognition, speech 
recognition, and translation.[1] In particular, the convolutional 
neural network (CNN) architecture that consists of multiple con-
volution and subsampling (pooling) layers can extract the useful 
feature information without requiring significant manual input 
data engineering,[2] which leads to higher accuracy in various 
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Therefore, the demonstration of the synaptic device has not yet 
directly led to the continuous optimization of the neuromorphic 
system. In particular, in the case of pattern recognition applica-
tions, only a few studies have been reported that employ the 
highly efficient feature extraction algorithm of the CNN on the 
hardware neural network.[21,22] This increases the performance 
gap between the machine learning algorithms (software) and 
the neuromorphic system (hardware).

This study addresses these issues by utilizing a device-to-
system level simulation based on a developed learning rule that 
has the potential for unsupervised online learning and conse-
quential image classification in a synaptic device network. It is 
expected that our results can be used to help with the quantita-
tive design and optimization of synaptic devices, especially the 
required number of weight states and the variation margin of 
the weight update to improve the pattern recognition accuracy. 
In addition, we redesign a synaptic device network architecture 
including a feature extraction process inspired by the CNN, and 
improved image classification efficacy is validated by the simu-
lation. The proposed network can classify the Modified National 
Institute of Standards and Technology database (MNIST) hand-
written digits at up to a 90% recognition rate despite using 
fewer synaptic devices than the architecture without feature 
extraction.

2. Results and Discussion

Feature extraction is a key principle of the image recognition 
processes in human and animal vision systems. A feature can 
be roughly defined as an “interesting” part of an object. Effi-
ciently distinguishing or recognizing an object becomes pos-
sible not by judging the entire image pixel-by-pixel but rather 
by comparing only the extracted features and learned memo-
ries with each other, as shown in Figure 1a. Theoretically, fea-
ture extraction reduces the dimensionality of the original data 
into a new space based on identified features, and it has been 
applied in many computer vision and machine learning algo-
rithms.[23,24] Among the machine learning algorithms, the CNN 
architecture is inspired by the organization of the human’s 
visual cortex, and the architecture is comprised of a number of 
convolutional and subsampling (pooling) layers.[1,2] These par-
ticular layers result in the efficient extraction of invariant fea-
tures from the input patterns, which enables one to overcome 
the limit of previous deep belief networks. Consequently, the 
CNN has showed overwhelming performance in image and 
speech recognition applications.

In our previous work,[25,26] we experimentally demonstrated 
an artificial synaptic device to emulate the functionalities of 
biological synapses and designed the synaptic device network 
along with a learning rule for the pattern recognition. Briefly, 
Figure 1b shows the implemented synaptic device network and 
the learning rule for our conceived image classification system. 
With the crossbar layout, each input neuron is connected with 
one pixel of the image. Input neurons emit presynaptic spikes 
(Vpre) wherein the timing of the presynaptic spikes represents 
the analog information of the pixel intensities. Subsequently, 
presynaptic spikes from the input neurons can simultaneously 
trigger multiple synaptic transistors. Postsynaptic currents 

(Ipost) determined by the channel conductance of each synaptic 
transistor are collected and accumulated at an output neuron. 
If the accumulated postsynaptic current level is greater than a 
given threshold value, one output neuron fires a postsynaptic 
spike (Vpost). Then, the synaptic weight can be modulated to any 
analog state according to the correlation of the pre and postsyn-
aptic spikes. Figure 1c shows the demonstrated synaptic device 
network (array) of our carbon nanotube (CNT) transistor based 
synaptic devices (see the Experimental Section).[25,26]

According to the aforementioned learning rule (which was 
referred to “simplified STDP scheme” in our previous work), 
the network could classify the MNIST handwritten digits with 
70% recognition accuracy.[25,26] However, our previous study 
still had two limitations. 1) It is unclear what the required 
specification of the synaptic device is in order to obtain 
higher recognition accuracy. Although the analog modulation 
of the weight state at the synaptic device is the key factor of 
the learning rule, a quantitative analysis on how the number 
of weight states (Nstate) and the variation margin of the weight 
update (ΔG = Gmax/Gmin) affect the recognition accuracy has 
not been performed in our previous studies. 2) Additionally, the 
network and the learning rule could not take into account the 
spatial structure of the images. For example, although the input 
images (digit “5”) are similarly distant on exactly the same 
footing as shown in Figure 1d, the network and the learning 
rule treat these two cases as totally different images, which is 
contradictory to the way humans deal with visual images. To 
train such spatially different images, more training images, 
and a bigger network are required. It is a critical drawback that 
restricts the energy-efficient and highly accurate recognition 
system. Fortunately, the same problem has been considered in 
the deep belief network algorithm, and the CNN architecture 
has solved this issue by adapting the particular feature extrac-
tion algorithm.[1] Therefore, in this study, 1) we investigate 
how different weight modulation characteristics of the synaptic 
device affect the recognition accuracy in the network by using 
a device-to-system level simulation. 2) In addition, inspired by 
the CNN, the feature extraction algorithm (software) is dem-
onstrated by the synaptic device network (hardware), and we 
investigate the improvement of the recognition accuracy in the 
redesigned network.

First, we investigate the impact of the synaptic device’s speci-
fications on the recognition accuracy in the network. (Note that 
the following discussion is independent of the synaptic device 
structure or weight modulation mechanism.) The analog modu-
lation of the weight at the synaptic device (i.e., conductance, G) 
can be characterized by several aspects: here we focus on Nstate 
and ΔG. When a pulse train is applied to our synaptic device for 
the potentiation (increasing G) or the depression (decreasing 
G), the measured G shows a gradual transition (Figure 2a) 
in which Nstate and ΔG can be manipulated by adjusting the 
number of applied pulses and the level of the pulse (VLTP, VLTD), 
respectively. Here, since the experimental demonstration of a 
reliable intermediate conductance of more than eight states 
is still very challenging in the case of two-terminal synaptic 
devices,[27–29] the analysis of the required Nstate value is essen-
tial to provide the design guidelines for the synaptic device net-
work. To identify the effect of Nstate on the recognition accuracy, 
the device-to-system level simulation was carried out.[25,26] The 
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detailed simulation procedure, parameters, and model used in 
this study are described in Note S1 of the Supporting Informa-
tion. Note that the effect of nonlinearity in conductance modu-
lation is neglected in the simulation to simplify the analysis. In 
other words, it is assumed in the simulation that the amount 
of modulation in conductance is constantly changed as shown 
in Figure S1 (Supporting Information). Figure 2b shows the 
recognition rate (i.e., classification accuracy) for the test images 
as a function of Nstate. Obviously, the recognition rate can be 
improved by increasing Nstate. When Nstate = 128, the maximum 
recognition rate reaches 75%. However, an Nstate greater than 
128 rather leads to the degradation of the recognition rate. 
This is because a larger Nstate requires more training epochs to 
modulate the weight up to the desired level. In other words, 
more pulse trains are needed to obtain the desired conductance 
change of the synaptic device, which results in the inefficiency 
(slowdown) of training process (see Note S2 of the Supporting 
Information). Moreover, compared to the case of Nstate = 8, the 
recognition rate is improved by only 5% at Nstate = 128. There-
fore, the effect of Nstate is not critical for improving the recogni-
tion rate.

Similar analysis was performed regarding the effect of ΔG on 
the recognition accuracy. In our synaptic device, ΔG is control-
lable by adjusting the level of the applied pulse (VLTP, VLTD) (see 
Note S3 of the Supporting Information). Figure 2c shows the 
simulated recognition rate as a function of ΔG. Interestingly, 
the recognition rate can be evidently improved by increasing ΔG 
when Nstate is small (e.g., Nstate = 8). In contrast, the recognition 

rate is rarely improved in spite of increasing ΔG when Nstate is 
large (e.g., Nstate = 128 or 512). These results indicate that the 
effects of ΔG and Nstate on the recognition rate are complicat-
edly conjugated. Although the recognition rate can be improved 
by increasing ΔG or Nstate, the improvement is limited by the 
combined effect of ΔG with Nstate. Consequently, increasing ΔG 
or Nstate are not always advantageous for improving the recog-
nition rate, but the specific optimum values only can improve 
the recognition rate, as shown in Figure 2d. However, note that 
the improved recognition rate by increasing ΔG is still only 5%, 
even in the best case. Therefore, it is obvious that the tuning of 
synaptic device specification (ΔG and Nstate) is not effective for 
improving the recognition rate. It implies that further research 
efforts should be devoted to better develop the architecture and 
learning rule.

Next, to understand the nature of misclassification, we inves-
tigate the details of the misclassified images. Figure 3a shows 
the confusion matrix over ten digits of the MNIST test set. In 
this, every single classification of the test inputs belongs to one 
of the 10 × 10 tiles, and its position is determined by the actual 
digit and inferred digit. Given a recognition rate of ≈70%, the 
most typical mistakes were that “4” was misidentified as “9” 
and “9” was misidentified as “4.” Additionally, Figure 3b shows 
the trained images (i.e., the maps of synaptic weights associ-
ated with each output neuron) in the network and the misclas-
sified test sets in the case of “4” and “9” digits. Surprisingly, the 
images that are misclassified are all easily distinguishable with 
our own eyes. Nonetheless, the reason why these images are 
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Figure 1. a) The schematic of the human visual process with feature extraction. The feature extraction is any algorithm that transforms raw data into 
features that can be used as an input for a learning algorithm. b) The synaptic device network for pattern recognition of 28 × 28 grayscale images 
consisting of the input and output layers. The input neuron is fully connected to the input image pixel in a one-to-one manner. The synaptic devices 
are located at the junctions between the input and output neurons. c) The fabricated synaptic device network and the schematic of the synaptic device. 
The CNT-based synaptic transistor emulates the functions of biological synapses through the analog channel’s conductance modulation. d) The 
example of the spatial difference problem that has similarly occurred in the deep learning algorithm.
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misclassified is due to a spatial difference. Although misclassi-
fied images look almost identical in appearance to the trained 
images, they shifted by a very small difference. Unfortunately, 
our learning rule considers these differences to be completely 

different images. In fact, this issue can be easily solved by just 
increasing the number of output neurons (Noutput). When Noutput 
increases, since the number of trained images corresponding to 
each output neuron increases, spatially different images can be 
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Figure 3. a) Average confusion matrix of the testing results over the ten digits of the MNIST test set. High values along the identity indicate a correct 
identification, whereas high values anywhere else indicate confusion between two digits, such as with the digits “4” and “9.” b) The selected examples 
of the trained images and the misclassified test sets in the case of the “4” and “9” digits.

Figure 2. a) Schematics of the applied pulse trains used to measure the analog conductance modulation of our synaptic device. Each pulse train 
consists of 128 potentiation or depression pulses applied to the gate (VLTP and VLTD for 5 ms), followed by small, nonperturbative read voltage pulses 
(1 V for 100 ms) within the intervals. b) The simulated recognition rate as a function of Nstate after 60 000 times of training epochs ((ΔG is fixed to 
10, and Noutput is fixed to 40). c) The simulated recognition rate as a function of ΔG and Nstate. d) The summarized correlation of ΔG and Nstate that 
impacts on the recognition rate.
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distinguished through each output neuron. Consequently, the 
recognition rate can be improved up to 80% by only increasing 
Noutput without any adjustments to the synaptic device’s specifi-
cations (see Note S4 of the Supporting Information). However, 
this approach requires a bigger network with more synaptic 
devices and consequently more energy consumption, which is 
far from what the neuromorphic system seeks.

To overcome this issue, in the following, we redesigned the 
synaptic device network architecture by including the hardware-
based feature extraction process. Figure 4 shows the schematics 
of the proposed feature extraction architecture that is inspired 
by the CNN. The main network plays the role of training an 
original input image (28 × 28 = 784 pixels) through the same 
learning rule as mentioned above, which is named the “image 
network.” The image network consists of a total of 784 × Noutput 
synaptic devices. Additionally, we add two particular networks 
that are named the “v-feature network” and the “h-feature net-
work,” respectively. These two networks play the role of training 
the extracted vertical/horizontal features obtained by per-
forming the convolution and subsampling (pooling) processes. 
In detail, the convolution operation is individually performed 
on each pixel of the input image, where the convolution kernel 
is a 2D matrix (e.g., a 3 × 3 matrix). Each pixel value of the input 
image is multiplied by the corresponding value in the kernel, 
and the consequential sum of products becomes the pixel value 
in the feature map. Here, since the edge is one of important fea-
tures of the image, we use a well-defined simple edge detector 
kernel called the Prewitt kernel.[30] Two different types of 

Prewitt kernels can extract the vertical and the horizontal edges, 
respectively. Since the input image has 28 × 28 pixels and a 
3 × 3 matrix kernel, the feature map will be 26 × 26 pixels. This 
is because the kernel can be moved 26 pixels across or down 
before colliding with the right-hand side or bottom of the input 
image. Next, this feature map is subjected to a subsampling  
(pooling) process that condenses the spatial information of the 
feature map. For instance, each pixel value in the pooling map 
summarizes a region of 2 × 2 pixels in the feature map. When 
we use the common procedure of max-pooling, the pooling 
map outputs only the maximum value of the feature map in 
the 2 × 2 region. Therefore, the pooling map will be reduced to 
13 × 13 pixels. Since this pooling process discards the exact posi-
tional information, the extracted features are less sensitive to 
spatial differences, which is the same strategy used in the CNN. 
This pooling map is trained in the v-feature and h-feature net-
works. Consequently, the v-feature and the h-feature networks 
consist of a total of 169 × Noutput synaptic devices, respectively.

Figure 5a shows all trained images in the “image network,” 
the “v-feature network,” and the “h-feature network,” respec-
tively (e.g., Noutput = 40), where the vertical and horizontal edges 
of the images are clearly trained by the v-feature and h-feature 
networks, respectively. Under this situation, when the test image 
to be classified is input to these three networks, the original 
test image is compared to the trained image in the image net-
work. Then, the firing occurs at the specific output neuron cor-
responding to the best matched the trained image. Likewise, the 
extracted features of the test image through the convolution and 
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Figure 4. The schematic of the proposed feature extraction architecture that is inspired by the CNN. The image network trains an original input image 
(28 × 28 = 784 pixels). In addition, the v-feature network and h-feature networks (13 × 13 = 169 pixels) train the extracted vertical/horizontal features 
obtained by performing the convolution and subsampling (pooling) processes.
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pooling processes are compared to the trained features in the 
v-feature and h-feature networks, respectively, and firings occur 
at the specific output neurons that are best matched with the 
trained features. If the test image leads to a firing on the same 
output neurons in all three networks, it means that the test 
image matches both the shape of the trained image and the 
vertical/horizontal features. Therefore, the possibility that the 
image is properly classified increases. Figure 5b shows the simu-
lated recognition rate according to the number of training epochs. 
Note that the proposed feature extraction architecture demon-
strates a higher recognition rate despite using fewer synaptic 
devices than the previous architecture without feature extraction. 
Obviously, the feature extraction can effectively improve the rec-
ognition rate while reducing the energy consumption owed to 
the use of fewer synaptic devices. Furthermore, by increasing the 
number of output neurons (Noutput) (as shown in Figure 5c), it 
becomes possible to implement a hardware-based image classifi-
cation system with a recognition rate exceeding 90%.

The last part in this study is how to implement the convolu-
tion process in the hardware. In the following, we present the 
experimental demonstration of the convolution operation by 
using the simple crossbar synaptic device network,[21] as shown 
in Figure 6a. (At this time, the pooling process requires addi-
tional complex circuitry that could not be experimentally imple-
mented as of yet.) In principle, the MNIST dataset consists of  
28 × 28 pixels in which each pixel corresponds to the intensity of 

the image in the range of 0 ≈ 255. Among these pixels, 3 × 3 pixels  
on which the convolution will be performed are selected, 
and the value of the intensity proportionally corresponds to 
the pulse amplitudes (0 V ≤ Vp1 to VP9 ≤ 1 V). These pulses 
are applied to the crossbar network. They generate the cur-
rent according to the channel conductance (G) of each cross-
point synaptic device in which the channel conductance is 
adjusted to three different values depending on the desired 
kernel weight values (e.g., Gmax, Gmax/5, and Gmin, as shown 
in Figure 6b). Then, the total output column currents (I+ and 
I−) are the sum of the multiplication between Vp and G (i.e., I+ 
and I− = ∑Vp∙G). Note that this crossbar network must have 
two columns due to the negative weight value of the kernel. 
One value represents the sum of the products from the posi-
tive weight values in the kernel (I+), and the other represents 
the sum of the products from the negative weight values in 
the kernel (I−). Accordingly, a differential readout of the two 
column currents (I+ − I−) represents the convolution results.

For the experimental proof-of-the-concept, the convolution 
operation was performed on a digit “9” image from the MNIST 
dataset, as shown in Figure 6c (the same method as that of  
ref. [21] was used). Vp1 ≈ VP9 are determined to be proportional 
to each pixel value (intensity), which is applied to the drain elec-
trodes of each synaptic device in the network (Figure 6d). As a 
result, the output column currents (i.e., I+ and I−) are the sum 
of the drain currents from each column, and I+ −I− represents 
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Figure 5. a) The synaptic weights in the “image network,” the “v-feature network” and the “h-feature network,” respectively (Noutput = 40). b) The 
simulated recognition rate with or without the feature extraction architecture. The feature extraction architecture demonstrates a higher recognition 
rate despite using fewer synaptic devices than the architecture without feature extraction c) The simulated recognition rate as a function of Noutput 
with or without feature extraction architecture.
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the convolution results. Figure 7 shows the convolution opera-
tion using the horizontal kernel (negative values after convo-
lution operation are clipped to zero). The convolution result 
from the calculation is obviously consistent with the result 
from the measured data, which indicates that the convolution 
operation can be reliably performed using the simple synaptic 
device network. Therefore, the demonstrated methodology can 
be applied to implement the above-discussed efficient feature 
extraction architecture for the image classification system.

3. Conclusion

In summary, we have demonstrated a synaptic device net-
work architecture with a feature extraction algorithm inspired 

by the CNN, and the pattern recognition efficacy is validated 
using a device-to-system level simulation. Surprisingly, the pro-
posed network can classify handwritten digit images at up to a 
90% recognition rate using only a smaller number of synaptic 
devices than the architecture without feature extraction. This 
architecture has not been constructed in any other previous 
study. In addition, the simulation results can be used to help 
with the quantitative design and optimization of the synaptic 
devices. The tuning of synaptic device specification (i.e., the 
required Nstate and ΔG) was not critical in improving the clas-
sification accuracy. Furthermore, we have experimentally dem-
onstrated the convolution operation from the Prewitt vertical/
horizontal kernels for the edge feature extraction on the fabri-
cated 9 × 2 crossbar synaptic device network. The demonstrated 
methodology is an important step toward effective big data 

Figure 6. a) The process of the convolution operation using a simple crossbar synaptic device network. b) The selected channel conductance values 
(Gmax, Gmax/5, and Gmin) that depend on the weight values of the kernel. c) A digit “9” image is input to the synaptic device network for the experimental 
convolution operation. Vp1–VP9 are determined in proportion to each pixel value (intensity), and d) applied to the drain electrode of each synaptic 
device. The output column currents (I+ and I−) and consequential convolution result (I+ – I−) represent the convolution result. The microscopic top-
view image shows our fabricated 9 × 2 crossbar network for the convolution operation where carbon nanotube-based synaptic transistors are located 
at the cross-point junctions of the rows and columns. Interestingly, since our synaptic device is based on the structure of the transistor (i.e., 3-terminal 
structure), the sneaky path current problem is perfectly prohibited.
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manipulation through the analog hardware implementation for 
more complex neuromorphic systems.

4. Experimental Section
Fabrication of Carbon Nanotube-Based Synaptic Transistor Array: 

CNT synaptic transistors were initially fabricated on highly p-doped 
rigid silicon substrates with a thermally grown 50 nm thick SiO2 layer. 
We used the local back-gate structure for efficient local modulation 
of the channels in the CNT transistors. To form the local back-
gate, the palladium (Pd) layer was first deposited and subsequently 
patterned using evaporation and a lift-off process, respectively. Next, 
a 50 nm thick SiOx layer, a 10 nm thick Au layer, and a 20 nm thick 
SiOx layer were sequentially deposited. The thin Au layer served as 
a floating gate for charge storage. Then, the top surface of the SiOx 
layer was functionalized with a 0.1 g mL−1 poly-l-lysine solution to 
form an amine terminated layer that acted as an effective adhesion 
layer for the deposit of the CNTs. Subsequently, the CNT network 
channel was formed by immersing the chip into a 0.01 mg mL−1 99% 
semiconducting CNT solution (NanoIntegris, Inc.) for several hours, 
followed by a thorough rinse with isopropanol and deionized water. 
Subsequently, the source/drain electrodes consisting of Ti and Pd 
layers (each 2 and 40 nm, respectively) were deposited and patterned 
using conventional thermal evaporation and a lift-off process, 
respectively. Finally, additional photolithography and oxygen plasma 
steps were conducted to remove unwanted electrical paths, which 
isolated the devices from one another.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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