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A B S T R A C T

In this study, we investigate the effect of rising time (TR) of liquid gate bias (VLG) on transient responses in pH
sensors based on Si nanowire ion-sensitive field-effect transistors (ISFETs). As TR becomes shorter and pH values
decrease, the ISFET current takes a longer time to saturate to the pH-dependent steady-state value. By correlating
VLG with the internal gate-to-source voltage of the ISFET, we found that this effect occurs when the drift/
diffusion of mobile ions in analytes in response to VLG is delayed. This gives us useful insight on the design of
ISFET-based point-of-care circuits and systems, particularly with respect to determining an appropriate rising
time for the liquid gate bias.

1. Introduction

An important indicator in industries such as food, pharmaceutical,
agriculture, biomedical, and environmental monitoring is pH; for ex-
ample, variations in pH of human blood are signs of serious, potentially
fatal diseases [1]. The solubility, stability, and permeability of a drug
through biological membrane also depend on pH [2], and therefore, a
precise pH measurement technique using a miniaturized sensor is es-
sential. Furthermore, the solubility of heavy metals such as lead, zinc,
and copper in soil is dependent on the pH [3], and therefore, pH
measurement is important for managing the environment.

Ion-sensitive field-effect transistors (ISFETs) [4] have attracted
considerable attention because of their compact structure, low-cost, and
ease of fabrication. Recently, ISFET-based pH sensors have been suc-
cessfully used in human genome sequencing [5–7]. The resolution of an
ISFET-based pH sensor depends on its individual technology and geo-
metry. Therefore, optimum operation of the sensor in complex analog
circuits where biasing configuration may change over time needs to be
anticipated. The transient response of an ISFET-based pH sensor is
governed by two processes: the convection/diffusion of H+ ions to the
sensor surface (diffusion time) and the response of the sensor to the
changes in proton concentration on its surface (response time). Diffu-
sion time depends on various factors that define the ion transport time

to the sensor, such as flow rate and the size/shape of the fluidic
channel. However, the transient response to time-varying liquid gate
bias (VLG) has been rarely investigated despite its importance. To op-
timize the details of operation, particularly the choice of the saturation
time of signals in the ISFET-based point-of-care (PoC) circuits, the in-
fluence of the rising time of VLG needs to be experimentally char-
acterized. We studied ways to simplify the properties that may affect
the way the sensor works. For example, we measured droplets before
they entered the microfluidic channel. In this way, we could exclude
complicated factors such as convection and diffusion in the analyte.

Conversely, the silicon nanowire (SiNW) ISFET-based biosensors
have great potential as essential building blocks for real-time, label-free
detection of biomolecules because of their advantages such as direct
electrical readouts and high sensitivity and the potential to integrate
them with complementary metal–oxide semiconductor (CMOS) circuits
[8–11]. Based on the top-down processing in the SiNW/CMOS hybrid
circuitry, researchers have already demonstrated electrical optimiza-
tion sensitivity [12], sensitivity boosting [13], voltage readout [14],
noise cancellation [15], and simulation using commercial technology
computer aided design (TCAD) [16]. It should therefore be noted that
operating the SiNW ISFET in the saturation region is desirable for a
robust analog front-end design, although the ISFET sensitivity itself can
be better in the sub-threshold rather than the saturation region.
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In this work, the influence of the VLG rising time (TR) on transient
current response in the top-down processed SiNW ISFET-based pH
sensors operating in the saturation region is investigated. By correlating
VLG with the internal gate-to-source voltage of ISFET (VGS,int) at the
electrolyte/insulator interface, we have gained new physical and che-
mical insights into the drift/diffusion of mobile ions in an electrolyte
analyte.

2. SiNW ISFET: Fabrication and experiments

SiNW ISFET-based pH sensors were fabricated on a boron-doped
(4×1015 cm−3) 6-inch (1 0 0) silicon-on-insulator wafer. The 100 nm-
thick Si layer at the top was separated from the Si substrate by a 375 nm
thick buried oxide (BOX). To build the buffer oxide as protection for
implantation, a 20 nm thick SiO2 layer was formed on top of the Si layer
by dry oxidation. As a result, the thickness of the top Si layer was re-
duced to 90 nm. Subsequently, channel implantation was conducted for
the p-type region (B+, energy: 20 keV, dose: 5× 1013 cm−2) and the n-

Fig. 1. Photo of the (a) fabricated chip, (b) the
SiNW biosensor, (c) the SiNW channel region, and
(d) the measurement environment. (e) Top view
of the liquid gate region.

Fig. 2. (a) Bird’s-eye view of the surface treated
SiNW biosensor. (b) Transfer curve of SiNW FET
measured in saturation mode using under the
different pH. (c) ΔVT extracted by constant cur-
rent method (at ID = 1 nA) of SiNW FET.
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type region (P+, energy: 40 keV, dose: 3× 1013 cm−2). After stripping
the buffer oxide in a HF solution, the annealing process was conducted
at 950 °C for 30min. Subsequently, the device-active region was pat-
terned on the Si layer via a mix-and-match process of electron-beam (e-
beam) lithography combined with conventional photolithography. The
90 nm thick Si layer was anisotropically etched in the HBr/O2-based
inductively coupled plasma chamber by using hydrogen silsesquioxane
(HSQ) and photoresist (PR) as the etch mask. A PR mask, which covered
only the SiNW channel, was used to dope the source/drain regions of
the SiNW with As+ ion implantation for an n-type source/drain. After
PR stripping, the annealing step followed at 1000 °C for 30min to ac-
tivate the dopant. The next step was to deposit a 500 nm oxide as an
interlayer dielectric using high-density plasma chemical vapor deposi-
tion. Subsequently, we applied chemical mechanical planarization. A
contact hole was then formed by photolithography and magnetic-en-
hanced reactive ion etching (MERIE) in a CHF3/CF4 plasma. After
metallization using Al sputtering, photolithography, and MERIE in
BCl2/Cl2 plasma, tetraethyl orthosilicate (TEOS) was deposited as a
passivating oxide to protect the metal lines. For electrical measurement,
the oxide layer on the metal pad region was etched by photolithography

and MERIE in CHF3/CF4 plasma. Finally, we removed the TEOS passi-
vation oxide using MERIE in CHF3/CF4 plasma so that the sensing area
on the SiNW channel region became open and connected with the SiNW
surface and the biomolecule analyte. The completion of alloy fabrica-
tion marked the end of the entire process. A photograph of the fabri-
cated chip is shown in Fig. 1(a). Scanning electron microscope images
of the SiNW ISFET biosensor and the SiNW itself are shown in
Fig. 1(b) and (c). The measurement environment is shown in
Fig. 1(d) and (e); Fig. 1 (e) shows the enlarged liquid gate contacting
the reference electrode (RE).

In the pH-sensing experiments, the SiO2 surface of the SiNWs was
modified with 3-aminopropyltriethoxysilane (APTES). A schematic
bird’s eye view of the surface-modified SiNW is shown in Fig. 2(a).
Surface-modified SiNW ISFET was then exposed to 0.1× potassium
phosphate buffer solutions with three different pH values (i.e., pH 5, 7,
and 9) by dropping buffer solutions onto a polydimethylsiloxane
(PDMS) container as seen in Fig. 1(d). The drain current (ID) is mea-
sured at room temperature at a constant drain/source voltage (VD/VS)
of 0.9/0 V while VLG was swept from −1 to 1.2 V with 25mV steps by
using a Ag/AgCl reference electrode, as seen in Fig. 1(e). The transfer
characteristics of the n-type SiNW ISFET for the three different pH
values are shown in Fig. 2(b). The gate leakage current is negligible. As
the pH levels increase, the conductance of the n-type SiNW FET de-
creases, resulting in a positive shift of the threshold voltage (VT). This
can be explained by the protonation/deprotonation of eNH2 and
eSiOH groups on the functionalized SiNW surface. At low pH levels, the
eNH2 group is protonated to eNH3, resulting in a positive charge. By
contrast, at high pH levels, the eSiOH group is deprotonated to eSiO−

and results in a negative charge [17]. The average VT shift (ΔVT) is
20mV per pH [Fig. 2(c)], which is below the Nernst limit as expected.
Small ΔVT is caused by non-ideal interfaces between the gate insulator
layer and electrolyte [18]. Although the ΔVT sensitivity is lower than

Fig. 3. Schematics of (a) VLG-time and (b) ID-time under the different pH and TR. (c) The graph of tsat-pH under the different TR. (d) The experimental results of ID-(time-TR) under
different TRs (0.2 s, 1 s, 5 s, and 10 s) and the different pH level (0.1 M potassium phosphate buffer, pH 5 - 9).

Table 1
Summarized effects of TR and pH on tsat.

tsat [s]

pH

TR 5 7 9

0.2 s 40.78 35.51 27.76
1 s 27.01 23.19 17.25
5 s 17.59 14.86 11.46
10 s 12.88 10.87 7.84
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our previous works [8,13,15], herein the transient response of ISFETs is
paid attention to rather than the sensitivity itself in DC response. More
importantly, it should be noted that our main conclusions, including
explanation, model, and method, will be generally available irrespec-
tive of the ISFET sensitivity.

The pH-sensing signal needs to be acquired after waiting for at least
a certain amount of time, called the saturation time, if it takes a sig-
nificant time for the ID to reach a steady-state value after the time-
varying VLG is setup. To systematically determine the optimal satura-
tion time, the transient ID was measured at a fixed VD=0.9 V, while
VLG was ramped up from 0 V to 0.9 V during TR, as illustrated in
Fig. 3(a). Here TR was varied over 0.2, 1, 5, and 10 s. In this way, the
transient ID was measured with varying TR and pH, as seen in Fig. 3(b).
The saturation time (tsat) was defined as the time difference between
the time spot when VLG arrived at 0.9 V and tsat,end. The saturation time
was symbolized as tsat and the time spot at ∂ID/∂t= 1 nA/s (tsat,end)
which means the moment when ID reached at the pH-dependent steady-
state value, as indicated in Fig. 3(b). The measured IDs as the function
of pH and TR are summarized in Fig. 3(d), and the experimentally ex-
tracted tsat is shown in Fig. 3(c) and Table 1.

VT is dependent on the pH value and is within the range of 0.5–0.6 V
(Fig. 3(d)). Our measurement satisfies the condition of VGS,int(t) ≤
VLG(t), and the maximum value of VLG is a constant VD value of 0.9 V.
Therefore, our ISFET operates in a saturation region only if
VGS,int > VT, so ID ∝ (VGS,int−VT)2. The VGS,int value during TR can be
then extracted using ID(t) / ID (t= tsat,end) = (VGS,int− VT)2/
(0.9−VT)2 because the VGS,int value is 0.9 V, i.e., the maximum VLG

value at t= tsat,end. VGS,int(t) is synchronously correlated with VLG(t) at
a constant pH of 5 as a function of TR (Fig. 4(a)) and is also correlated

with VLG(t) at a constant TR= 1 s as a function of pH (Fig. 4(c)), re-
spectively. As seen in Fig. 4(a) and (c), ID(t) versus VGS,int(t) during TR is
also shown in Fig. 4(b) and (d).

3. Results and discussion

The rate of time-varying ID can be formulated as follows:
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where the first term of the right-hand side increases as TR becomes
shorter. The second term suggests the delay of VGS,int in response to the
time-varying VLG, which is due to the retardation of mobile ions in the
electrolyte.

In the transient model of ISFETs, the second term is frequently
modeled by combining the electrolyte resistance, double-layer capaci-
tance, stern capacitance, and the capacitance due to the charging/dis-
charging of the surface ionizable groups [19]. However, the second
term should be carefully modeled because the electrolyte and the FET
cannot be decoupled from each other, and the relation between VGS,int

and VLG is complicatedly non-linear.
Furthermore, our observation in Fig. 4 suggests that the second term

depends on either the first term (∂VLG/∂t) or the pH. In the case of short
TR, mobile ions cannot respond to the time-varying speed of VLG. It is
also noteworthy that as mobile ions drift more quickly to the electro-
lyte/gate oxide interface, in other words, the more abruptly proton ion
concentration, i.e., [H+], increases at the electrolyte/gate oxide inter-
face, the larger the flux of ions diffuses backward away from the elec-
trolyte/gate oxide interface. It takes a longer time, therefore, for ID to

Fig. 4. (a) VLG-VGS,int under the different TR at a
constant pH 5. (b) VGS,int-ID under the different TR at
a constant pH 5. (c) VLG-VGS,int under the different pH
at a constant TR. (d) VGS,int-ID under the different pH
at a constant TR.
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Fig. 5. Proton ion concentration ([H+]) in the electrolyte/gate oxide
interface from different TR at (a) t = 0, (b) 0< t< tsat,end, and (c) t =
tsat,end. Illustration of relation (d) between VLG and VGS,int and (e) be-
tween VGS,int and ID from different TR.

Fig. 6. Proton ion concentration ([H+]) in the electrolyte/gate oxide
interface from different pH at (a) t = 0, (b) 0< t< tsat,end, and (c) t =
tsat,end. Illustration of relation (d) between VLG and VGS,int and (e) be-
tween VGS,int and ID from different pH.
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reach the steady-state value, i.e., tsat increases, because the ID reaches a
steady-state after the drift and diffusion of mobile ions balance each
other, as shown in Fig. 5(a)–(c). Consequently, during TR, the VGS,int is
more deviated from the VLG in a short TR case rather than in a long TR

case, as observed in Fig. 4(a) and as illustrated in Fig. 5(d) and (e). With
respect to TR dependence, our model is highly consistent with the ob-
servations in Fig. 3 and Table 1.

The rate of ∂VGS,int/∂VLG also depends on the [H+] concentration of
electrolyte, i.e., the pH value. As the [H+] increases and the pH gets
lower, it takes a longer time for the drift and diffusion of mobile ions to
be balanced by each other and the tsat increases, as illustrated in
Fig. 6(a)–(c). Consequently, during TR, VGS,int deviates more from VLG in
a low pH case rather than in a high pH case as observed in
Figs. 4(c), 6(d), and (e). Our model is also consistent with the ob-
servation in Fig. 3 and Table 1 in terms of pH dependence.

Therefore, a longer hold time for VLG biasing is required as the TR

becomes shorter and the pH decreases.

4. Conclusion

The influence of both TR of VLG and pH on the transient ID response
has been experimentally investigated in SiNW ISFET-based pH sensors.
As TR becomes shorter and the pH value decreases, it takes a longer
time for the ISFET current to saturate to the pH-dependent steady-state
value. Before the time arrives at t= tsat,end, VGS,int deviates more from
VLG in either of the two cases, the shorter TR case or the lower pH case.
Our model, which is based on the time taken for mobile ions in the
electrolyte to be balanced between drift and diffusion, explains the
observation very well. Our results supply the experimental background
for more exact transient ISFET modeling, e.g., double-layer, stern, and
charging/discharging capacitance, and give useful insights on the de-
sign of rising time of VLG bias in ISFET-based point-of-care circuits and
systems.
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