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ARTICLE INFO ABSTRACT

The homeostatic neuron circuit using a double-gate MOSFET is proposed to imitate a homeostasis functionality
of a biological neuron in spiking neural networks (SNN) based on a spike-timing dependent plasticity (STDP).
The threshold voltage (Vy,) of the double-gate MOSFET is controlled by independent two-gate biases (Vg; and
Vo). By using Vi, change of the double-gate MOSFET in the neuron circuits, the fire rate of the output neuron is
controlled. The homeostasis functionality is implemented by the operation of multi-neuron system based on the
proposed neuron circuit. Through the SNN based on STDP using MNIST datasets, it is demonstrated that the
recognition rate (~91%) of the SNN with the proposed homeostasis functionality is higher than that (~79%) of
the SNN without the proposed homeostasis functionality. Also, the results of the recognition rate with the
variations (o/p < 0.5) of the synaptic devices and the initial Vy, of neuron circuits show a low degradation
(1 ~ 3%) in the recognition rate. Thus, it is demonstrated that the homeostasis functionality of the proposed
neuron circuit has the immunity to variations (o/ < 0.5) of the synaptic devices and the neuron circuits in the
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1. Introduction

Recently, hardware-based neural networks (HNNs) have been stu-
died to reduce power consumption in processing complex computations
and enormous data [1]. Especially, hardware-based spike neural net-
works (H-SNN) based on spike-timing dependent plasticity (STDP) rule
that enable on-chip training and asynchronous systems have been re-
searched [2-8]. To implement the hardware-based SNNs, various
neuron circuits and synaptic devices such as phase change random
access memory (PCRAM), resistive random access memory (RRAM) and
FET-based device have been investigated [9-11]. However, there are
variations in the hardware-based neural network composed of the sy-
naptic devices array and multi-neurons. These variations cause the
degradation of pattern recognition in the SNN based on the STDP rule.
To compensate these variations in the hardware-based SNNs, a home-
ostasis functionality of the biological neuron has been proposed [12].
The homeostasis functionality in the SNNs is to control the fire rate of
the neuron circuit, and various hardware-systems have been researched
to mimic the homeostasis functionality [13-17]. Most studies control
the fire rate of neurons by modulating the amount of current

* Corresponding author.
E-mail address: jhl@snu.ac.kr (J.-H. Lee).

https://doi.org/10.1016/j.sse.2019.107741

Available online 13 December 2019
0038-1101/ © 2019 Elsevier Ltd. All rights reserved.

transmitted from synaptic devices. A neuron circuit using a double-gate
MOSFET is relatively more stable because it compares the potential of a
membrane capacitor with the voltage applied to only one independent
gate.

In this paper, we propose the neuron circuit using the double-gate
MOSFET that controls the fire rate of the neuron circuit. The threshold
voltage change (Vi) of the double-gate MOSFET is investigated as a
parameter of the gate bias (Vg»). Also, a homeostasis circuit for con-
trolling Vg, of the double-gate MOSFET is proposed. The operation of
the homeostasis functionality is demonstrated through the circuit-si-
mulation of the proposed multi-neurons system. Finally, we demon-
strate the immunity to variations of the synaptic devices and neuron
circuits through the simulation of a 2-layer SNN based on the proposed
neuron circuit.

2. Device structure and fabrication
Fig. 1 (a) and (b) show a 3-D schematic view and a cross-sectional

scanned electron microscopy (SEM) image of the double-gate device
fabricated on a bulk Si wafer, respectively. The structure of double-
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Fig. 1. (a) 3-D schematic view of the synaptic device. (b) Cross-sectional SEM
image of the floating fin-body MOSFET.
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Fig. 2. Schematic views of key fabrication process steps of the floating fin-body
MOSFET on p-type (1 0 0) bulk Si wafer.

Si poly-Si

gates is proposed to control a threshold voltage (V) of the MOSFET.
The bulk fin-body width (W) is 35 nm. Here, the doping concentrations
of fin-body, source and drain region are 1 x 10'® em™3, 2 x 10%°
em 3, and 2 x 10%° cm ™3, respectively. The thickness of gate dielectric
stack (SiO,) is 9 nm and the gate material is the n*-doped poly-Si. This
structure was fabricated through the following process steps as shown
in Fig. 2. A layer of thin Si3N, is deposited on (1 0 0) Si wafer. Then, a
poly-Si layer is deposited and patterned for SizN, spacer formation as
shown in Fig. 2 (a). The poly-Si is stripped, and Si fins are formed by dry
etching using the SizN4 spacer as a hard-mask. And then, a thick SiO,
layer is deposited by high-density plasma chemical vapor deposition
(HDPCVD) process for the isolation as shown in Fig. 2 (b). After etching
a SiO, partly, ion implantations are performed for field and channel
dopings. A SiO, (9 nm) layer and n*-doped poly-Si layer are deposited
as the gate insulator and the gate material, respectively. By coating the
wafer with a thinned PR as shown in Fig. 2 (c) and etching partly the
PR, only the n*-doped poly-Si on SisN, spacer is exposed. Then, the
exposed the n™-doped poly-Si is etched to split the n*-doped poly-Si.
Then PR is removed, followed by the n*-doped poly-Si patterning to
form the gate as shown in Fig. 2 (d). After Si3Ny side-wall stripped, the
buffer SiO, is grown on Si fins for ion implantations of source and drain
(S/D). After, ion implantations of S/D are performed, followed by rapid
thermal annealing at temperature of 1050 °C (5 sec) for S/D activation.
Then, inter layer dielectric (ILD) is deposited, and contact holes are
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Fig. 3. (a) Measured I-Vg; curves of the double-gate MOSFET as a parameter
of Vga. (b) Vy, change of the double-gate MOSFET as a parameter of Vg,.

patterned. A metal pattern is formed.

3. Results and discussion
3.1. The characteristics of the double-gate MOSFET

Fig. 3(a) shows the measured Ip-Vg; curves of the double-gate
MOSFET as a parameter of gate bias (Vg»). When the positive voltage is
biased to the gate2 (G2), the threshold voltage (Vy;,) of the double-gate
MOSFET decreases. By biasing the negative voltage to G2, Vy, of the
double-gate MOSFET increases. Fig. 3(b) shows the measured Vi
changes of the double-gate MOSFET as the parameter of Vg, at I of
10nA. Since the channel region of the double-gate MOSFET is fully
depleted, the Vy, change of the double-gate MOSFET is linear with Vg,
change.

3.2. Integrate-and-fire circuit using double-gate MOSFET for SNNs

Fig. 4 (a) and (b) shows a diagram of the integrate-and-fire neuron
circuit with double-gate MOSFET and a homeostasis circuit, respec-
tively. The neuron circuit is composed of the double-gate MOSFET, a p-
type MOSFET, three n-type MOSFETs, two inverters (INV1 and INV2),
and two capacitors (Cpem Of 0.5 pF and Ciese; of 0.05 pF). The home-
ostasis circuit is composed of a p-type MOSFET, two n-type MOSFETs, p-
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Fig. 4. (a) Diagram of the integrate-and-fire (IF) neuron circuit with double-
gate MOSFET. (b) Diagram of the homeostasis circuit for controlling Vg, of the
double-gate MOSFET. (c) The operation characteristics of the proposed IF
neuron circuit.

(Tinput:Ioupue = 10:1) and n-type current mirrors (linpue:loupue = 1:1), and
a capacitor (Cy of 0.5 pF). The parameters of the n-, p-type MOSFETs,
and supply voltage comprising the circuit are as follows: L = 0.5 pm,
W = 0.1 um, Vpp = 1.0V, and Vgg = -1.0 V. In the neuron circuit, the
Cmem is used to integrate signals transmitted from synaptic devices
array. The double-gate MOSFET in the neuron circuit compares the
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membrane potential (Viem) with Vi, to trigger an output spike. When
the Ve is higher than the Vi, of the double-gate MOSFET, the double-
gate MOSFET turns on and the input node of INV1 goes from high to
low state. Then, the output node (V) of INV1 become high state, and
Viem is back to the initial state by the M,es. The output spike is
transmitted to the next synaptic devices. The neuron circuit using the
double-gate MSOFET biased by constant Vg, has a regular spike fre-
quency at the same input signal without synaptic updates. If a home-
ostasis circuit is applied to each neuron (1 ~ N: the number of neurons)
and the Cy,y is connected to the G2 of the neuron circuit, the threshold
of neuron circuit is determined by the amount of charges accumulated
in the Cy . When the neuron circuit fires and transmits the output spike
to the homeostasis circuit, the charges accumulated in the Cyy are
discharged through the n-type current mirror. The potential of the Cy y
becomes close to Vgg (-1V), and the threshold of neuron circuit in-
creases as shown in Fig. 4 (c). Otherwise, the potential of the Cyy in-
creases and the threshold of neuron circuit decreases when the other
neurons fire since the p-type current mirror is connected to other
neurons. These operations mimic the homeostasis functionality of the
biological neuron with the self-controlled fire-frequency. When a
neuron connected to the synaptic devices with large deviations is not
fired, the neuron can have a chance to fire though the proposed
homeostasis functionality. It can prevent the accuracy degradation in
SNNs with large deviations.

Fig. 5(a) shows a block diagram of a multi-neurons system with the
proposed homeostasis functionality for the SNN. Fig. 5(b) shows the IF
operation and Vg5 change of three neurons (Neurons 1, 2, and 3) with
the homeostasis circuit. In a neural system based on winner-take-all
(WTA) without homeostasis circuit, the neuron 2 can only perform the
IF operation when the synaptic current to the neuron 2 is largest. When
the homeostasis functionality is applied to the multi-neuron system, the
threshold of the fired neuron 2 is increased by the output spike. On the
other hand, the threshold of other neurons is decreased by the output
spike of the fired neuron transmitted to p-type current mirror (linpu:
Ioupue = 10:1) of the homeostasis circuit. Increasing the threshold of all
neurons can slow down the learning and reasoning processes, even if
the signals from the synaptic devices are sufficient. Therefore, it is
necessary to lower the threshold voltage in a multi-neuron system.

3.3. The spiking neural network based on the proposed neuron circuits

To demonstrate the enhancement of classification accuracy and the
immunity of the synaptic device variation in SNNs with the homeostasis
functionality, the SNN based on a STDP learning rule is implemented
using the proposed neuron circuit with homeostasis functionality. The
number of neurons in each layer are 784 (input) and 200 (output). Each
image of MNIST set is represented by 28 x 28 pixels, respectively. For
training and evaluating the classification accuracy, 60,000 training and
10,000 test images of MNIST set are used. In previous work, LTP/LTD
characteristics of the TFT-type synaptic devices and simplified STDP
learning rule were proposed and investigated as shown in Fig. 6 (a), (b),
and (c) [18,19]. The TFT-type synaptic device consists of intrinsic poly-
Si as an active layer and n-doped poly-Si as a charge storage layer as
shown in Fig. 6 (a). The amount of charges stored in the charge storage
layer is modulated by the potential difference (Vp. - Vpose) between pre-
and post-signal. The synaptic weights for LTP/LTD characteristics are
updated as shown in Fig. 6 (b) and (c). The TFT-type device is used as
the synaptic devices to demonstrate the proposed SNN with the
homeostasis functionality because it is compatible with conventional
CMOS technology and has stable program/erase operation for LTP/LTD
characteristics.

After 3 epochs of MNIST training, the simulated recognition rate
(~91%) of the SNN with the proposed homeostasis functionality is
higher than that (~79%) of the SNN without the proposed homeostasis
functionality as shown in Fig. 6 (d). Because the fire frequencies of all
neuron circuit are controlled by the homeostasis functionality during
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Fig. 5. (a) Spike neural network system based on the proposed neuron circuit to
implement the homeostasis functionality. (b) The operation characteristics of
the proposed multi-neurons.

learning process, all neuron circuits have a chance to fire and update
the synaptic weights.

To implement a hardware-based SNN for the on-chip training, the
variations of the synaptic devices and neuron circuits should be con-
sidered. Fig. 7(a) shows the device-to-device (D-to-D) and pulse-to-
pulse (P-to-P) conductance variations of the synaptic devices to in-
vestigate the immunity of the synaptic device variations in SNNs based
on the proposed homeostasis functionality.

If variations of the synaptic devices and neuron circuits are large (o/
p > 0.3) in the SNN without the homeostasis functionality, there are
the neuron circuits with no chance to fire due to the low conductance of
synaptic devices or the high thresholds of neuron circuits. However,
although the variation of the synaptic devices and neuron circuits are
very large (0.3 < o/p < 0.5), the degradation of the recognition rate
(1 ~ 3%) is very low as shown in Fig. 7(b). Since the thresholds of
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Fig. 6. (a) A schematic of TFT-type device as the synaptic device. (b) The op-
eration scheme to update the synaptic weights. (¢) LTP/LTD characteristics of
the TFT-type [18,19]. (d) Classification accuracy as epochs of MNIST training
sets in the HW-based neural network.

neuron circuits also are learned and changed during the synaptic
weights updated, the homeostasis functionality can compensate the
variation of synaptic devices and neuron circuits.

4. Conclusion

The double-gate MOSFET in the neuron circuit was has been pro-
posed to implement the homeostasis functionality. The proposed tran-
sistor is compatible with the conventional CMOS technology. The DC
characteristics of the double-gate MOSFET were investigated as para-
meter of the Vg,. The threshold of the neuron circuit using the double-
gate MOSFET is controlled by the change of Vg,. The homeostasis
functionality was implemented by controlling the thresholds of the
neuron circuits in the multi-neurons system. The low degradation of the
recognition rate (1 ~ 3%) with the variation of the synaptic devices
(0.3 < o/p < 0.5) was confirmed through the simulation of the 2-
layer SNN based on the proposed neuron circuit. It was demonstrated
that the homeostasis functionality of the proposed neuron circuit can
compensate the variations (o/p < 0.5) of the synaptic devices and the
neuron circuits in the SNN based on STDP. We believe that the idea we
have proposed can be easily implemented using existing CMOS devices.
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influence the work reported in this paper.
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