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A B S T R A C T

We analyze that the initial synaptic weight distribution affects the performance, such as the learning speed,
recognition rate and the power consumption in the spiking neural networks (SNNs) based on spike-timing-
dependent plasticity (STDP) learning rule. A thin-film transistor (TFT)-type NOR flash memory is used as a
synaptic device. In this fully connected two-layer neuromorphic system using the proposed pulse scheme, the
results with and without the homeostasis functionality were analyzed separately. In addition, power con-
sumption of the network in various initial synaptic weight distributions, and recognition rate that varies with the
number of output neurons are also investigated. In pattern recognition for 28 × 28 MNIST handwritten patterns,
higher performance is achieved in various aspects when the initial synaptic weights are distributed near the
maximum value.

1. Introduction

In recent years, neuromorphic computing system has attracted a
great deal of attention as an alternative of the von Neumann archi-
tecture and is being rapidly developed with the exponential data
growth [1]. Especially, in the field of software, deep neural networks
(DNNs) based on back-propagation algorithms show high recognition
rate in pattern recognition [2,3]. Moreover, various efforts have been
made to implement a hardware neural network (HNN) using electronic
synaptic devices for low power consumption and improved speed [4,5].
As another approach to implementing HNN, spiking neural networks
(SNNs) based on spike-timing-dependent plasticity (STDP) learning rule
are being studied, and inference performance has been investigated in
simulations [6–10]. In order to improve the performance of the net-
work, various attempts have been made in both neural networks. In the
case of DNNs, various synaptic weight initialization methods have been
studied to improve the performance of the network [11–13]. However,
no studies have been reported on the effect of the initial synaptic weight
distribution in SNNs.

Previously, we proposed a TFT-type NOR flash memory array as a
synaptic device [14] and the unsupervised online learning based on
two-layer fully connected SNN was performed [15]. In this work, the

impact of the initial synaptic weight distribution in proposed neural
network is investigated in various aspects such as learning speed, re-
cognition rate, and power consumption. Furthermore, the results with
and without the homeostasis are analyzed respectively. In addition,
training and inference are carried out on the various number of output
neurons.

2. Device characteristics and network design

Fig. 1(a) shows the schematic 3-D array view of a TFT-type NOR
flash memory cells as a synaptic device. A half-covered n+ poly-Si
floating gate (FG) is formed as a charge storage layer between the cross-
point of the word line (WL) and the source line (SL). The thicknesses of
the poly-Si active layer, tunneling SiO2 layer, blocking SiO2 are 20 nm,
7 nm, and 15 nm, respectively. The width of the control gate is 2 μm
and the length between the source and drain is 0.5 μm. One synaptic
device can be scaled down to 8F2 if the width of the control gate is
scaled to the minimum feature size (F). The crossbar arrangement of
synaptic devices is advantageous in terms of scaling of synaptic devices.
Fig. 1(b) shows the measured conductance change of the synaptic de-
vice as the number of pulses applied to the WL and SL. 50 repeated
erase pulses (VG = −3 V, VS = 5 V) and 300 repeated program pulses
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(VG = 0 V, VS = −4.8 V) are applied. The conductance change re-
presents the measured long-term potentiation (LTP)/long-term de-
pression (LTD) characteristics of the proposed synaptic device.

The pulse scheme of presynaptic (PRE) and postsynaptic (POST)
neurons for selective STDP-based weight update depending on the
overlapped voltage between PRE (Xpre = VG) and POST (Xpost = VS)
neurons is represented in Fig. 2(a). When a POST neuron fires, a POST
feedback pulse is applied to all connected synaptic devices through a
common SL. The weights of synaptic devices contributing to the spike of
the POST neuron are potentiated under the erase condition
(Xpre = −3 V, Xpost = 5 V). The weights of the other synapses are
depressed under the program condition (Xpre = 0 V, Xpost = −4.8 V)
since only POST feedback pulse is applied. The weights of synapses
connected to the not fired POST neurons do not change. Under these
conditions, the simplified STDP learning rule used for updating synaptic
weights can be obtained as illustrated in Fig. 2(b). In this figure, rLTP
and rLTD represent the increase and decrease of the weight magnitudes,
respectively.

Fig. 3(a) shows the schematic illustration of a fully connected two-
layer system with a 28 × 28 input neurons and multiple output neu-
rons. Output neurons exploited leaky integrate-and-fire (LIF) neuron
model and lateral inhibition functionality. The system level pattern
learning simulation was performed by the software Python using the
measured LTP/LTD characteristics of a TFT-type NOR flash memory cell
in Fig. 1(b) and simplified STDP learning rule in Fig. 2(b). The neural
circuit and operation mechanism used in this simulation are the same as
those used in the previous work [16]. In this simulation, full binary
MNIST datasets consisting of 60,000 training data and 10,000 test data
is used. In all cases, the learning is done in 3 epochs since the re-
cognition rate saturates after 3 epochs. The uniform random distribu-
tion of the initial synaptic weight is divided into four parts between the
minimum weight (Wmin) and the maximum weight (Wmax) as shown in
Fig. 3(b).

3. Results and discussion

3.1. Learning speed and recognition rate

Fig. 4(a) shows the recognition rate of the proposed fully connected
SNN with 500 output neurons as a parameter of the initial synaptic

weight distribution in Fig. 3(b). The homeostasis functionality [17] is
not used in this simulation. It is clearly seen that significantly higher
recognition rate (~92%) and faster learning speed are achieved when
the initial synaptic weights are distributed near the maximum value.
Higher initial synaptic weights lead to a rapid increase in membrane
potential, resulting in less time consumption for learning. The learning
time of the red line in Fig. 4(a), where the initial synaptic weight dis-
tribution is highest, is about 7 and 23 times less than those of the blue
and black lines in Fig. 4(a) for the lower weight distribution. Here, the
learning time is defined as the time taken to reach 90% of the saturation
recognition rate. On the other hand, when the initial synaptic weights

Fig. 1. (a) Crossbar array of TFT-type NOR flash memory cells used as synaptic
devices. (b) Measured LTP/LTD characteristics of proposed device.

Fig. 2. (a) Pulse scheme of PRE and POST neurons for STDP learning rule. (b)
Simplified STDP learning rule.

Fig. 3. (a) Schematic illustration of a fully connected two-layer neuromorphic
system. (b) Initial synaptic weight distributions.
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are distributed near the minimum value (green and purple lines in
Fig. 4(a)), the output neurons are not fired and eventually learning does
not work properly.

Fig. 4(b) shows the recognition rate of the same network as Fig. 4(a)
as a parameter of the initial synaptic weight distribution. Unlike the
previous case, the homeostasis functionality is used in this simulation.
The homeostasis functionality adopts the method used in the previous
research [17]. If the firing rate of a particular output neuron exceeds
the target firing rate, the threshold voltage of the neuron is increased
and in the opposite case, the threshold voltage of the neuron is de-
creased. When the homeostasis functionality is used in the output
neurons, the recognition rates for all initial synaptic weight distribu-
tions saturate to a relatively higher value (~93% when the initial sy-
naptic weights are distributed near the maximum value) than that of
the network without the homeostasis functionality. However, learning
the network requires much more time and more training data. The
learning time of the red line in Fig. 4(b), where the initial synapse
weight distribution is highest, is about 10 times less than that of the
green line in Fig. 4(b) for the lower weight distribution. Even if the
initial synaptic weight distribution consists of low values, the recogni-
tion rate can increase to a relatively higher value after several iterations
(green line in Fig. 4(a) and (b)). However, when the initial synaptic
weights are distributed near the minimum value (purple line in
Fig. 4(b)), the output neurons are still not fired although homeostasis
functionality is applied. This is because there is not enough weighted
sum for the neuron to fire for the time the input comes in, and the
membrane potential of the output neuron is reset to zero when the next
input comes in.

In the proposed SNN, when the weights of the synaptic devices are

updated by an output spike from a fired neuron, the synaptic devices to
which the input signal was applied are potentiated and the others are
depressed. LTD characteristic in LTP/LTD curve is more abrupt than
LTP near the maximum value of synaptic weight. In addition, back-
ground region is relatively larger than pattern region. Moreover, high
initial synaptic weight distribution facilitates fast integration in the
membrane capacitor and therefore output neurons fire more often.
Thus, trained synaptic weight maps are formed more quickly in
learning certain patterns using a high initial synaptic weight distribu-
tion. These phenomena can be seen in Fig. 5. Besides, the SNN without
the homeostasis functionality shows a similar recognition rate to that of
the SNN with the homeostasis functionality when the initial synaptic
weights are distributed near the maximum value as represented in
Fig. 4(a) and (b). There is no depression in the weight of synapses
connected with neurons that do not fire, so the likelihood of firing will
still be high enough due to the fast integration in the membrane ca-
pacitor even if homeostasis is not used, resulting in a homeostasis
functionality. This means that by setting the initial synaptic weight
distribution near the maximum value, the circuitry needed to imple-
ment the homeostasis functionality can be saved. This can bring addi-
tional benefits in terms of power consumption and area occupation. In
short, when the initial synaptic weights are distributed at a higher
value, considerably high performance is achieved in various aspects
such as the learning speed and recognition rate regardless of whether
the homeostasis functionality is used or not.

3.2. Power consumption

Fig. 6(a) and (b) represent the power consumption of the proposed
fully connected SNN with homeostasis functionality until the recogni-
tion rate saturates as a parameter of the initial synaptic weight dis-
tribution in Fig. 3(b). The power consumption during the training the
network is compared through the amount of charge charged and dis-
charged in the membrane capacitor (Fig. 6(a)) and the number of times
the synaptic weights have been updated (Fig. 6(b)). The amount of
consumed power is normalized based on the smallest value (red bar in
Fig. 6(a) and (b)) in this figure.

When the initial synaptic weights are highly distributed, the amount
of charge charged and discharged in the membrane capacitor is up to 7
times smaller than that of the lowest initial synaptic weight distribution
as shown in Fig. 6(a). Similarly, Fig. 6(b) shows that the number of
weight updates for the highest synaptic weight distribution is reduced
by 6.5 and 5.6 times for potentiation and depression, respectively,
compared to those with the lowest synaptic weight distribution. This
means that a higher initial synaptic weight distribution is beneficial in
terms of power consumption and less training data is needed for net-
work learning.

Fig. 4. (a) Recognition rate without the homeostasis and (b) with the home-
ostasis as a parameter of the initial synaptic weight distribution.

Fig. 5. Changes in weight map for the same time period under high and low
initial synaptic weight distribution conditions.
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3.3. Change in the number of output neurons

The recognition rate versus the number of output neurons is also
investigated as shown in Fig. 7(a), (b), and (c). The three figures are
illustrated by different initial synaptic weight distributions. Solid lines
represent the recognition rate with the homeostasis functionality, while
dashed lines represent the recognition rate without the homeostasis
functionality. As the number of output neurons increases, the recogni-
tion rate increases for all initial synaptic weight distributions similar to
previous study [15]. As the initial synaptic weight distribution becomes
lower, the recognition rate of the network without the homeostatic
functionality becomes significantly lower than the recognition rate with
the homeostatic functionality, as shown in Fig. 7(b) and (c). However,
Fig. 7(a) shows that when the initial synaptic weights are distributed
near the maximum value, it has a similar recognition rate regardless of
whether the homeostasis functionality is used or not. The result shows
the significance of the initial synaptic weight distribution clearly.

4. Conclusion

In this paper, we have investigated the impact of the initial synaptic
weight distribution in various aspects and proposed a method to
achieve high performances in 2-layer spiking neural networks.
Simulation results show that higher initial synaptic weight distribution
is beneficial in terms of recognition rate, learning speed and power
consumption regardless of whether or not the homeostasis functionality
is used. In particular, learning speed and power consumption were
improved almost 10 times and 7 times, respectively. These results show
that the weight initialization should be considered important in spiking
neural networks.
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