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Abstract
In this paper, we reviewed the recent trends on neuromorphic computing using emerging
memory technologies. Two representative learning algorithms used to implement a hardware-
based neural network are described as a bio-inspired learning algorithm and software-based
learning algorithm, in particular back-propagation. The requirements of the synaptic device to
apply each algorithm were analyzed. Then, we reviewed the research trends of synaptic devices
to implement an artificial neural network.

Keywords: neuromorphic computing, emerging memory, spike-timing-dependent plasticity
(STDP), spike-rate-dependent plasticity (SRDP), back-propagation (BP), synaptic device
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1. Introduction

Recently, machine learning has attracted a great deal of
attention in the IT industry and is being developed rapidly with
the performance enhancement of the graphics processing unit
(GPU)-based hardware accelerator. Although there are a vari-
ety of algorithms in machine learning, deep neural network
(DNN) technology based on the back-propagation (BP) algo-
rithm has shown excellent performance in many areas includ-
ing image, speech recognition, and translation, even sometimes
outperforming human cognitive abilities [1–6]. The state-of-
the-art architectures of DNNs include convolutional neural
networks (CNNs) and recurrent neural networks (RNNs).
However, there are important challenges with regard to power
consumption, the occupied area of the hardware platform and
training times. Therefore, the need for implementing neuro-
morphic artificial neural networks (ANNs) with low power and
small area has been emerging [7, 8]. Table 1 summarizes

different types of neuromorphic ANNs and their respective
features. The human brain described in the left side of the table
has the very powerful ability to recognize real-world problems
with extremely low power, but the learning mechanism and
structure of the human brain are not yet clearly defined. Deep
learning shown on the right side is based on the software-based
learning algorithms and the von Neumann computer archi-
tectures. It is also powerful in recognition tasks, but the power
consumption is very high. In ANNs using neuromorphic
technology, learning algorithms can be classified into two
categories: bio-inspired learning algorithms and software-based
learning algorithms [9–11]. The learning algorithms based on
the bio-inspired approach, such as spike-timing-dependent
plasticity (STDP) and spike-rate-dependent plasticity (SRDP),
implement the model of the biological neuron cell behavior
[12]. In the case of bio-inspired learning algorithms, there are
two subcategories: supervised and unsupervised learning.
Research to implement ANNs using bio-inspired learning
algorithms is biased towards using unsupervised learning.
However, since supervised learning can be efficient in certain
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application fields, the above two learning methods are being
studied in parallel. The neural networks based on bio-inspired
algorithms have the advantage of low power, because the neural
network is capable of event-driven operation and on-chip
learning, similar to the biological brain. It is very important for
memory technologies to implement ANN using these algorithms
to have their own synapse weight-update scheme in order to
learn by themselves without the help of external computation
systems. In addition, the weight-update method and endurance
are also significant for reducing the time and power consumption
in the learning process. The retention characteristics of the
weight itself should also be considered to prevent errors in the
inference process in the learned synapse array. In contrast, the
software-based learning algorithms, especially BP, are based on
the mathematical model and optimize the hypothesis of the
neural network by minimizing the training and generalization
errors [13]. There are various approaches to accelerate the DNNs
using the BP algorithm such as Google’s tensor processing unit
(TPU), MIT’s Eyeriss, the University of Utah’s ISAAC, CAS’s
DaDianNao and UCSB’s PRIME [14–18]. Among them, the
use of emerging nonvolatile memory (NVM) devices has been
widely studied because they provide high scalability and enable
high-speed parallel operations with extremely low power.
Therefore, this approach using the emerging NVMs can also be
called a DNN accelerator. Electronic synaptic devices can
represent the weight values of neural networks with their multi-
level conductance values, and perform massively parallel com-
putations using these conductance values. Here, we focus on
approaches to accelerate DNNs using electronic synaptic devi-
ces, and these approaches are called hardware-based deep neural
networks (HW-DNNs). The HW-DNNs are divided into off-
chip training and on-chip training. On-chip training can provide
low power and high-speed learning, while off-chip training can
be applied to more complex neural networks. It is very hard to
represent software-level high-precision weight values as the

analog values of actual electronic devices. These actual elec-
tronic devices have non-ideal characteristics such as nonlinearity
of conductivity response, asymmetry, finite number of con-
ductance values, limited endurance and variation of the NVM
device itself. Therefore, in the study of accelerating DNNs using
electronic synaptic devices, the non-ideal characteristics of these
devices should be fully considered.

Furthermore, we also review the deep spiking neural net-
works (DSNNs) that combine the DNNs with spiking signal
domains. Although there are not many studies to implement
DSNNs using electronic synaptic devices, applying the low-
power characteristics of electronic devices to event-driven sys-
tems of SNNs can be a promising field of neuromorphic research.

In this paper, recent trends in the implementation of
neuromorphic computing using emerging memory technology
are reviewed. Various devices such as resistive memory
(RRAM), conductive-bridge memory (CBRAM), phase
change memory (PCM), spin-based memory and field-effect
transistor (FET)-based memory have been reported as a
synaptic device. The requirements of the synaptic devices for
implementing a low-power and highly integrated neural net-
work are discussed. We present the conclusion by analyzing
current research trends of emerging memory devices for neu-
romorphic computing and additional research challenges for
successful neuromorphic computing chips. The goal of this
work is to motivate more advanced research work by sharing
the current global research status in neuromorphic computing.

2. Learning algorithms for implementing ANN

2.1. Bio-inspired learning algorithms (STDP/SRDP)

In this chapter, we introduce bio-inspired learning algorithms
and the features of ANNs implemented using these

Table 1. Different types of neural networks and their respective features.
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algorithms. There are two representative bio-inspired learning
algorithms: STDP and SRDP. These algorithms are learning
methods developed from the learning mechanisms observed
in the biological brain. STDP is a learning mechanism in
which the synapse weight is changed by the time difference
between the signal from the presynaptic neuron and the signal
from the postsynaptic neuron. SRDP, another learning algo-
rithm, determines the weight change of the synapse by the
frequency of the signal from the presynaptic neuron applied to
the synapse. Here, we introduce the neural encoding methods
and classify the ANNs using bio-inspired learning algorithms
as supervised/unsupervised learning. We then discuss the
requirements of the synaptic devices used to implement the
ANNs applying bio-inspired learning algorithms.

2.1.1. Methods of neural encoding. In order to train neural
networks and have the ability to classify data, it is essential to
transform the data into proper form. The method of converting
data into input pulse is determined by various system
components such as learning algorithms, inference methods,
types of neuron circuit models and so on. The simplest data
expression is binary form in which data is transmitted by only
‘0’ and ‘1’. This form is advantageous for easy tasks [19] such

as recognizing simple patterns such as those in figure 1(a) [20].
This is because the memory and time required for learning as
well as the burden on peripheral circuits are reduced. In addition,
binary data make a significant difference between input signals,
which can maximize the effect of the input data. However, more
complex data, such as a colorful image (as shown in figure 1(c))
[21] or gas mixture [22], should be expressed in grayscale rather
than binary form to represent more information of the data. For
instance, CIFAR-10 and 100 image data sets with 60 000
different RGB images should be presented in grayscale. Many
neural coding rules to encode the data as a stimulus in the
neuron system have been studied in various models, such as
‘population coding’ [23] and ‘sparse coding’ [24]. However,
among various neural coding schemes, ‘rate coding’ and
‘temporal coding’ are the schemes most widely studied since
they are easy to implement in hardware systems [25].

Rate coding is theoretically based on Bienenstock, Cooper
and Munro theory [26]. The larger the value of the data, the
greater the frequency of spike firing. In particular, many
groups, including Indiveri [27], O’connor [28], Diehl [20, 29]
and Querlioz [30] modeled input pulses as Poisson-distributed
spike trains. They generated stochastic Poisson input pulse
whose firing rate is proportional to the intensity of the input
pixel. This stochastic scheme showed robustness to random

Figure 1. (a) Simple binary MNIST data set used to evaluate the performance of a network. CC BY 4.0. Reproduced from [20]. CC BY 4.0.
(b) Scheme of input pulse train presented by (top) temporal encoding and (bottom) rate encoding. IEEE. © [2011] IEEE. Reprinted, with
permission, from [36]. (c) Complex input data such as colorful images should be encoded in grayscale. [21] John Wiley & Sons. © 2008 The
Author(s) Journal compilation © 2008 The Eurographics Association and Blackwell Publishing Ltd.
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noise spikes [30]. Some groups, on the other hand, generated
constant-frequency spike train which controls the firing rates
only with the inter-spike time duration [31]. The rate-encoding
scheme has the disadvantage that it is not appropriate for the
rapid change of input stimuli in fast time scale. However, it
notably shows high robustness with noise [30, 32]. Temporal
coding, where information is represented by spike timing, has
also been applied to many neural networks. In the temporal
coding scheme, the larger the quantity of the data, the earlier
the spike pulse is generated. For example, 0101100 sequence
encoded temporally is considered differently from 0001011,
even though the firing rates of sequences are the same [33].
Kaneko et al transformed the input data to pulse time
information in the time clock [34]. In addition, Sheik
constructed a bio-plausible network combining a temporal
coding scheme with a leaky integrate & fire (LIF) neuron
model [35]. Figure 1(b) shows the pulse schemes for
presenting input pulse in two different encoding methods [36].

2.1.2. Supervised learning. Among the methods for
implementing a hardware-based neural network (HNN),
learning through supervision has largely been investigated in
two ways: BP algorithm based on gradient descent and bio-
inspired learning with teaching signals. In this chapter, we will
only deal with the latter method. In bio-inspired learning,
unsupervised learning is being studied more widely. However,
conventional studies show several advantages in supervised
learning and it is being studied with unsupervised learning.
Kim et al explained that supervised learning has significantly
higher performance over unsupervised learning with the same
number of output neurons and synapses [37]. Although the
modulation of synapse weight is controlled by the feedback
spike from the integrate-and-fire (I&F) circuit in conventional
unsupervised learning, this study used the feedback signal with
exterior supervision. The teaching signal from the output layer
is modeled as temporal coding to train synapses with an STDP
algorithm. The target output neuron presents the teaching
signal at late timing (compared to input signal) to potentiate the
target synapses, and the other neurons present teaching signals
at early timing. Yuan et al explained why the teaching signal is
essential for supervised learning with synchronous input
signals [38]. That is because the synchronously presented
input cannot make the output spike precede the input signal.
Hence, there will be only weight increment by the STDP rule,
no weight decrement. Artificial stimulation is required to
prevent the synapse weights from increasing excessively.
Querlioz et al proposed another application of supervised
learning for improving the performance of the network
[30, 36, 39]. In a conventional network trained by
unsupervised learning, the data represented by the neurons
cannot be known because the data are trained only in the first
firing random neuron. An additional labeling process is
required to identify the results, and supervised learning can
play this role in the next layer, as shown in figure 2. In other
words, data are classified in the first layer trained without

supervision and labeled in the second layer trained with
supervision. As previously mentioned, this group also claims
that supervised learning can reduce the number of neurons or
synapses and achieve higher accuracy in simple methods [39].
On the other hand, networks trained by supervision can exhibit
a low level of robustness in device variation, limiting the
configuration and expansion of the synapse array. Supervised
learning can be a burden on area and power because it requires
peripheral circuits.

2.1.3. Unsupervised learning. In SNNs, complex cognitive
computing, including online unsupervised learning and
classification, has been effectively performed using bio-
inspired learning algorithms [7, 9]. STDP, which is one of
the most popular biologically plausible learning rules, has been
exploited in an unsupervised fashion [40]. The local learning
rule modulates synaptic weights between the presynaptic and
postsynaptic neurons in accordance with the spike-timing
difference [41]. The synaptic weight potentiates if a spiking of
a postsynaptic neuron follows that of a presynaptic neuron, and
vice versa. The smaller the spike-timing difference, the larger
the synaptic weight variation. In an STDP-based SNN, a
current through each synapse is fed into a postsynaptic neuron,
and the neuron fires when its membrane potential exceeds the
spiking threshold. Simultaneously, synaptic weights are
updated, and lateral inhibition is commonly implemented in
the form of winner-takes-all (WTA) architecture for
competitive learning. Although a full computational
architecture with the STDP local learning rule should be
explored more, STDP-based unsupervised learning is efficient
in distinguishing unlabeled or unstructured data and is
advantageous for real-time data processing [42]. Online
unsupervised learning performance based on the STDP local
learning rule has been shown in system-level simulation works
using memristive synapse and the LIF neuron model.

Diehl et al proposed a biologically plausible unsupervised
learning mechanism including lateral inhibition and adaptive

Figure 2. Topology of architecture combining an unsupervised and
supervised layer. IEEE. © [2012] IEEE. Reprinted, with permission,
from [39].
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threshold [20]. In order to improve the biological plausibility of
an SNN, the power law and exponential conductance-
dependent synaptic plasticity were exploited, and the input
pattern train was encoded to ensure a minimum firing rate of
each postsynaptic neuron for competitive learning by increas-
ing the maximum input firing rate. Using this SNN based on
the STDP algorithm, a 95% classification performance on the
MNIST handwritten data set was demonstrated with 6400
postsynaptic neurons in the two-layer system. Although
remarkable classification results of unsupervised learning
based on STDP have been executed, the demonstration
requires additional circuitry for the fine-tuning of model
parameters not suitable for processing various types of data.

For the straightforward implementation of an SNN using
a nonvolatile memory array, Querlioz et al introduced a
simplified STDP rule for selective pattern learning in an
unsupervised manner [30, 36]. This simple learning rule is
focused on the spiking of a postsynaptic neuron. When an
output neuron fires, synapses contributed to the output spike
are potentiated, while the other synapses connected to the
output neuron are depressed. Thus, each output neuron is
selectively specialized to different patterns. In [36], the
simplified STDP scheme with a memristive device model was
easily executed by overlapping pre- and postsynaptic spikes
using simple pulse generation owing to its simplicity. In order
to confirm the robustness of SNNs, the same group has
investigated the impact of device variability including
memristive synapse and CMOS neuron variability with
system-level simulations in SNNs [30]. Realistic system-
level simulation was performed by considering the actual
variation caused by memristive synapse variability and sneak
path issues in the crossbar array of two-terminal memristors.
The system was immune to variations of synaptic devices up
to 25%, and the homeostasis function effectively compen-
sated for the significant reduction in the recognition rate by
device variability. Immunity improvement for device varia-
tion is due to the proposed homeostasis of neurons. This
biologically plausible property along with a WTA topology of
lateral inhibition plays a key role in regulating the

responsiveness of neurons equivalently, preventing ones with
lower thresholds from firing predominantly in the network.

In addition to the previously introduced approaches for
unsupervised learning, several different input encoding
schemes, learning methods and system structures have been
presented to enhance the performance of SNNs. Ambrogio
et al proposed the input pulse scheme in which the input noise
is exploited to depress background synapses [43]. During the
unsupervised learning process in a fully connected two-layer
system using the standard STDP learning rule, a pattern of
MNIST digit and a random noise were presented alterna-
tively. This configuration induced potentiation of pattern
synapses and depression of background synapses for selective
learning in an unsupervised fashion. In [44], specifically, the
impact of input parameters associated with noise on pattern
learning speed and efficiency was evaluated through both
Monte Carlo and analytical models. This investigation can be
useful to optimize input parameters for minimizing false firing
by noise in the SNN using inherently nonlinear and
asymmetric memristive devices. However, these works
require additional circuitry for random noise generation, and
it is hard to optimize input parameters of noise for processing
various types of data.

Milo et al performed a simple learning task of an 8×8
pattern based on SRDP using a novel 4-transistor/1-resistor
(4T1R) synapse [12]. Each synapse contains four transistors
divided into two branches (figure 3(a)). Unlike STDP-based
pattern learning, SRDP is implemented by controlling the
degree of overlapping signals according to the frequency of
the input signal when two identical signals are applied with a
certain time difference. The biologically plausible SRDP
learning rule was verified by simple learning simulations
using a single output neuron.

To overcome the asymmetry issue of memristive devices
used as synapses, Bichler et al designed a synapse with two-
PCM devices so that the synaptic weight was encoded with
the difference in conductivity between a pair of devices [45]
(figure 3(b)). This configuration allows the implementation of
negative synaptic weights. A conductance refresh mechanism

Figure 3. (a) Implementation of SRDP using a 4T1R synapse. Transistors M1 and M2 are associated with long-term potentiation, and long-
term depression takes place via transistors M3 and M4. © [2016] IEEE. Reprinted, with permission, from [12]. (b) Schematic of a two-PCM
synapse in a crossbar. © [2012] IEEE. Reprinted, with permission, from [45]. (c) Neuromorphic system based on an STDP algorithm using
an encoding scheme with both original patterns and complementary patterns. [46] (2017) © Springer International Publishing AG 2017. With
permission of Springer.
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was introduced to avoid the saturation of device conductance
while preserving the synaptic weight. With the simplified
STDP learning rule, real-time car trajectory extraction of
temporally correlated features from the dynamic vision sensor
was performed in system-level simulation.

In contrast to most system-level simulation works, Sidler
et al proposed the input encoding scheme using an additional
complementary pattern and demonstrated online unsupervised
pattern learning capabilities on the MNIST data set with both
simulation and experimental results [46]. To apply this
approach, the number of input neurons and synapses should
be delivering information from a complementary pattern
input, which is an inverted version of the original pattern
input (figure 3(c)). Even though it requires additional area of
the system, this configuration could be advantageous for the
classification of overlapping features.

2.1.4. Requirements. To apply the bio-inspired learning
algorithm, it is advantageous for the synaptic device to have
two or three terminals, so that learning according to the time
difference between pre- and postsynaptic signals or the
frequency of presynaptic signals can be easily implemented.
Generally, a specific pulse scheme is used for automatic
synaptic weight update [47]. It is common practice to reduce
the control of the peripheral circuits to a minimum for
implementing a weight update in the synaptic device.

The devices used for bio-inspired learning include
RRAM, CBRAM, PCM, spin-based memory and FET-based
memory. In order to perform complex large-scale tasks, the
basic requirement is the density of the device array. In
general, most research groups are basically using crossbar
arrays to construct large-scale parallel computing neural
networks. Although two-terminal devices are attracting much
attention because of their ease of implementation of crossbar
arrays, in fact a two-terminal device requires a select device to
eliminate the sneak path that occurs in a crossbar array
configuration. Ultimately, in order to further increase the
degree of integration, the form of a device capable of 3D
integration is preferred [48]. Moreover, since the goal is not to
implement a synaptic device-only array, but to implement a
large-scale neural network system, the CMOS compatibility
of the synaptic device is important. As a result, it is necessary
to be compatible with CMOS technology for system
implementation.

Energy efficiency in weight learning and inference
processes in synaptic device arrays must also be carefully
considered, and needs to be evaluated differently depending
on the application. It is important to reduce the power used in
the weight update in the case of a synaptic device array used
in an application where continuous learning is to be
performed in real time. In the case of a synaptic device array
mainly used for the inference process, it is necessary to reduce
the power at the weighted-sum operation.

In terms of the characteristics of a single synaptic device,
analog memory characteristics should be examined [49]. The

purpose of the neuromorphic synaptic array is to efficiently
combine the multiplication results of the input signal with the
weights of the memory devices having the analog weight.
Therefore, having an analog memory characteristic is the
most basic requirement of a memory device to be used as a
synaptic device. As the number of weight levels increases, it
is easy to perform complex tasks. Numerous studies have
been made to realize gradual implementation of such analog
memory characteristics [50]. In [50], Yu summarized the
desirable performance metrics for synaptic devices, as shown
in table 2. If it is difficult to achieve a gradual conductance
change due to the inherent characteristics of the device, the
gradual change may be implemented by controlling the pulse
shape and adding additional devices (resistors or FETs) [47].
However, these additional devices make the overall circuit
design complicated. In general, the conductance margin
between the high-conductance state and low-conductance
state of the device can have a significant impact on the
performance of the neural network. This margin should be
ensured to clearly distinguish the difference between the
background signal and image signal when comparing
weighted-sum values in the inference process. However, this
is closely related to the size of the neural network depending
on the application used. It should be noted that if the upper
limit of the conductance value becomes too large, the power
consumption of the entire system may increase sharply. Also,
the aspect of change in the weight-update process is very
important. It is usually described by nonlinearity and
symmetry. In the course of implementing the gradual
conductance, many research groups have mainly analyzed
how the linearity of conductance change, symmetry char-
acteristics of potentiation and depression process affect
inference accuracy [51]. In [51], Kim et al reported that the
nonlinearity in the conductance change of synaptic devices is
not critical to the pattern recognition rate of the system, as
shown in figure 4. In the case of using STDP and SRDP
algorithms, which are widely used in bio-inspired learning, it
is more important to prevent abrupt depression than to
reinforce the linear potentiation characteristic of the device. In
the case of supervised learning involving external

Table 2. Summary of the desirable performance metrics for synaptic
devices. © [2018] IEEE. Reprinted, with permission, from [50].

Performance metrics Desired targets

Device dimension <10 nm
Multi-level states number >100* (with linear and symmetric

update)
Energy consumption <10 fJ/programming pulse
Dynamic range (on/off
ratio)

>100*

Retention >10 years* (for inference)
Endurance >109 updates* (for online training)

Note: * these numbers are application dependent.

6

Nanotechnology 30 (2019) 032001 Topical Review



intervention, the side effects by abrupt depression can be
mitigated slightly, but in the case of unsupervised learning
without external control, if abrupt depression of the synaptic
weight occurs, the learned weights may be lost momentarily.
In the case of supervised learning, however, the possibility of
weight loss due to abrupt depression can be reduced by
external intervention. It is necessary to make an effort to
improve the device structure and conductance change
mechanism in order to prevent abrupt depression. Also, the
endurance characteristic of the memory devices is an
important factor in the learning process, and the retention
characteristic is an important factor in the inference process.
This is because the inference accuracy is affected by how long
the synaptic device can maintain the weight state determined
through the learning process. Considering actual chip
implementation, it will be important to analyze and improve
endurance and retention characteristics in synaptic devices. In
addition, the analysis of the uniformity of the device is critical
for large-scale chip implementation. In general, neural

networks are known to have some degree of immunity to
device variation [30, 52]. However, the variation between
synaptic devices should be as small as possible, because it
negatively affects power consumption and speed in the
learning process. Recently, studies on the implementation of
an HNN using a proven flash memory technology have been
actively conducted due to the immaturity of the new memory
technologies [37, 53, 54].

2.2. Software-based learning algorithm (BP)

The software-based deep neural networks (SW-DNNs) with a
well-studied BP algorithm [55] have shown excellent perfor-
mance. As shown in figure 5, a SW-DNN consists of the input
layer, hidden layers and output layer. Each node of the layer is
known as a neuron and a node connection between adjacent
layers is called a synapse. The strength of a synapse is the
synaptic weight, or simply the weight. By using the BP algo-
rithm, we can find the optimal values of the weights to

Figure 4. (a) Synaptic device conductance (G) as a function of applied pulse number with randomly assigned NL values. (b) Simulated
recognition rate as a function of the maximum NL value after 60 000 training epochs. (c) Synaptic weights between the input to output
neurons with 40 output neurons, when the NL ranges are 0∼0.24 and 0∼0.77. Reproduced from [51]. CC BY 4.0.
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minimize the training and generalization errors. In the process of
finding the optimal weights, the vector-by-matrix multiplication
(VMM) of forward propagation (FP) and BP accounts for a
large portion of the computational tasks. However, HW-DNNs
can perform this VMM with very low power and high speed
because the result of the VMM is simply the current of the
electronic synaptic device array, which is the product of the
input voltage and conductance. There are two main approaches
for HW-DNNs: on-chip training and off-chip training. We
define on-chip training where the weights are updated within the
synaptic device array for each iteration, not depending on batch
size. For on-chip training, the hardware, including the synaptic
device array, should perform FP, BP and weight updates. On the
other hand, off-chip training means the weight updates are
performed by software and then the calculated weights are
transferred to the synaptic device array. In this case, the synaptic
array is only used for the VMM for FP after training, which is
also called inference or dot-product engine (DPE). Table 3
shows the off-chip and on-chip training rule of an HW-DNN
compared to an SW-DNN. In an HW-DNN, two identical
electronic devices are required to represent a unit synapse,
because the weights (Wij for the weight of the synapse between
the ith neuron in the l-1 layer and the jth neuron in the l layer) of
the unit synapse in neural networks should have both positive
and negative values. The input signal a l

i
1-( ) (for the ith neuron

in the l-1 layer) and the weight (Wij) can be represented by the
applied voltage V l

i
1-( ) and conductance difference of the unit

synapse (G Gij ij-+ -), respectively. The positive and negative
values of the weights can be expressed by subtracting the output
current from a pair of synapses (Wij=G Gij ij-+ -). By con-
necting all unit synapses in the l-1 layer connected to the jth
neuron in the l layer, the currents from each unit synapse are
summed G G V .N

i
ij ij i

l 1å -+ - -( ( ) )( ) This weighted-sum value
(sj

l) is then converted to the input signal of the next layer (a l
i )

using an activation function ( f ), which is implemented by
electronic circuits. For off-chip training, the synaptic device

array is responsible for this FP. Furthermore, for on-chip train-
ing, BP and weight updates should be implemented using the
synaptic device array. In addition to the FP, to compute the BP,
the backward-weighted-sum should be performed after the
weight matrices are transposed. In other words, the postsynaptic
neurons during FP should act as the function of the presynaptic
neurons in the BP, and vice versa. That is, the synaptic device
array should be transposable to implement BP. The input signal
in the backward direction ( l

jd for the ith neuron in the l layer)
and the weight (Wij) are represented by applied voltage (V l

j ) and
the conductance difference in the unit synapse (G Gij ij-+ -),
respectively. In this way, the backward-weighted sum (∑j

M Wij
l

jd ) can be performed by connecting all unit synapses in the l
layer connected to the ith neuron in the l-1 layer. Then, we can
obtain the error delta value of the ith neuron in the l-1 layer
( l

j
1d - ) by multiplying the derivative value of the activation

function f’(s l
i

1- ) by the backward-weighted-sum value. After
the error delta values of all layers excluding the input layer are
obtained through this process, the weights can be updated
according to the product of the learning rate (η), error delta value
of the postsynaptic neuron ( l

jd ) and activated value of the pre-
synaptic neuron ( f (s l

i
1- )).

2.2.1. Off-chip training. A nanoscale memory crossbar array
can naturally carry out VMM, which is a computationally
expensive task for many important applications in a single
time step by Kirchhoff’s current law [56]. Some researchers
use on-chip training schemes to minimize the effect of device
variation on learning accuracy [57–60]. However, up-to-date
on-chip training approaches are slow, because of iterative
processes with extensive reading and writing of all devices,
with limited performance/energy efficiency compared to
software [61] and potential device wearout [62]. To overcome
these issues, some groups developed off-chip training in
neuromorphic computation as a realistic solution.

1) UCSB’s three-layer perceptron network using NOR
flash memory.

Merrikh-Bayat et al implemented a prototype
three-layer neuromorphic network using arrays of
highly optimized embedded nonvolatile floating-gate
cells redesigned from a commercial 180 nm NOR flash
memory (figures 6(a)–(c)) [63]. Their main advantage is
very mature fabrication technology. Custom design has
been recently demonstrated for the industrial-grade 180
[64, 65] and 55 nm [66] NOR flash memories. Floating-
gate cells are quite suitable to be used as adjustable
synapses in neuromorphic computing, as the memory
arrays are redesigned to allow for individual, precise
adjustment of the memory state of each device. In this
network design, the energy-saving gate coupling
[67, 68] of the peripheral and array cells, which works
well in the subthreshold mode was used, with a nearly
exponential dependence of the drain current IDS of the
memory cell on the gate voltage VGS (figure 6(d)). The
desirable synaptic weights calculated in an external
computer running a similar ‘precursor’ software-
implemented network, using the standard BP algorithm,

Figure 5. Typical structure of the DNNs composed of the input layer,
hidden layers and output layer.
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were transferred into the network by analog tuning of
the memory state of each floating-gate cell, with
peripheral analog demultiplexer circuitry. Only one cell
of each pair, corresponding to a particular sign of the
weight value, was tuned, while its counterpart was kept
at a very small, virtually zero, initial conductance to
decrease the weight transfer time. The digital encoders
and shift register circuits and their layouts were
synthesized from Verilog in a standard 1.8 V digital
CMOS process. All active blocks of the circuit,
including 101 780 floating-gate cells, have a total area

below 1 mm2. The network has shown a 94.7%
classification fidelity on the MNIST dataset benchmark,
close to the 96.2% obtained in simulation. The
classification of one pattern takes a sub-1 μs time and
sub-20 nJ energy—both numbers much better than
those in the best reported digital implementations of
the same task.

2) Arizona State University’s BNN based on RRAM.
Using an RRAM-based synapse, Yu et al [69]

demonstrated BNN with BP with a new record for the
scale of the synaptic array up to 512×1024. They

Table 3. Off-chip and on-chip training rule of HW-based neural networks.

Hardware based

Target Software based Off-chip On-chip

Weights Wij Wij G Gij ij-+ - G Gij ij-+ -

FP Sj
l( ) W a

i
N

ij i
l 1å -( ) G G V

i
N

ij ij i
l 1å -+ - -( ) ( ) G G V

i
N

ij ij i
l 1å -+ - -( ) ( )

Activated value aj
l( ) f sj

l( )( ) f sj
l( )( ) f sj

l( )( )

BP i
l 1d -( ) W f s’j

M
ij j

l
i
l 1å d -· ( )( ) ( ) G G V f s’j

M
ij ij j

l
i
l 1å -+ - -( ) · ( )( ) ( )

Weight updates WijD f sj
l

i
l 1h d- -· · ( )( ) ( ) f sj

l
i
l 1h d- -· · ( )( ) ( )

Figure 6. ESF1 NOR flash memory cells. (a) Cross-section of the two-cell ‘supercell’ (schematically) and (b) its equivalent circuit. (c) TEM
cross-sectional image of one memory cell, fabricated in a 180 nm process. (d) Drain current of the cell as a function of the gate voltage, at
VDS=1 V, for several memory states. (d) Gray-shaded region shows the subthreshold conduction region; currents below IDS=10 pA (the
level shown with the dashed line) are significantly contributed by leakages in the experimental setup used for the measurements. Inset:
extracted slope of this semilog plot, measured at IDS=10 nA, as a function of the memory state (characterized by the corresponding gate
voltage). © [2017] IEEE. Reprinted, with permission, from [63].
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proposed a methodology to binarize the neural network
parameters with the goal of reducing the precision of
weights and neurons to 1-bit for classification. They
experimentally demonstrate the BNN on Tsinghua’s 16
Mb RRAM macrochip fabricated in a 130 nm CMOS
process. Because of the negative value of weights in the
BNNs, they used two columns to represent the weight
by taking the differential output. Even under finite bit
yield and endurance cycles, the system performance on
the MNIST handwritten digit data set achieves ∼96.5%
accuracy for classification, close to ∼97% accuracy by
the ideal software implementation. In addition, they
showed redundant and massively parallel networks
provided high resilience to random bit errors. This work
reported the largest scale of the synaptic arrays and
achieved the highest accuracy so far. The proposed
BNN implementation is also applicable to the neuro-
morphic designs with other binary memories such as
static RAM (SRAM), PCM and even spin-transfer
torque magnetic randon access memory (STT-MRAM).

3) HP’s DPE based on a memristor crossbar.
Hu et al [70] demonstrated high-precision analog

tuning and control of memristor cells across a 128×64
array and evaluated the resulting VMM computing
precision. Utilizing the natural current accumulation
feature of the memristor crossbar, the DPE was
developed as a high-density, high-power efficiency
accelerator for VMM. Single-layer neural network
inference is performed in 128×64 arrays, and the
performance compared to a digital approach is assessed.
They invented a conversion algorithm to map arbitrary
matrix values appropriately to memristor conductance
in a realistic crossbar array, accounting for device

physics and circuit issues to reduce computational
errors. This conversion algorithm can be extended to
any other crossbar structures or cross-point devices by
just replacing the circuit or device models. Accurate
device resistance programming in large arrays is
demonstrated by close-loop pulse tuning and access
transistors. To validate this approach, they simulated
and benchmarked one of the state-of-the-art neural
networks for pattern recognition on the DPEs. The
result shows no accuracy degradation compared to the
software approach (99% pattern recognition accuracy
for the MNIST data set) with only 4-bit DAC/ADC
requirement, while the DPE can achieve a speed-
efficiency product of 1000×to 10 000×compared to
a custom digital application-specific integrated circuit.

4) Arizona State University’s convolution kernel operation
on resistive cross-point array.

Gao et al [71] proposed a dimensional reduction of a 2D
kernel matrix into a 1D column vector, i.e. a column of the
array, and enabled the parallel read-out of multiple 2D kernels
simultaneously. They experimentally demonstrated the con-
volution kernel in the CNN on a 12×12 HfOx crossbar.
Figure 7 shows the microscopic top-view image of our
fabricated 12×12 cross-point array: six contact pads are
located at the four edges, and resistive Pt/HfOx/TiN stacks
(from top to bottom) are formed at the cross-point junctions of
the rows and columns. As a proof-of-concept demonstration,
they used the Prewitt kernels to detect both the horizontal and
vertical edges of the 20×20 pixels of the black and white
MNIST handwritten digits data set. The experiments were
performed on the fabricated 12×12 resistive cross-point
array based on the Pt/HfOx/TiN structure. The experimental

Figure 7. (a) Microscopic top-view image of a fabricated 12×12 cross-point array. Probe card tips have touched on the pads.
(b) Implementation of the Prewitt horizontal kernel (fx) and vertical kernel (fy). © [2016] IEEE. Reprinted, with permission, from [71].
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results of the Prewitt kernel operation perfectly match the
simulation results, indicating the feasibility of the proposed
implementation methodology of the convolution kernel on
resistive cross-point array. The proposed methodology can be
applied to implementing larger kernels in deeper CNN
architecture on-chip.

2.2.2. On-chip training. In contrast to off-chip training,
hardware including the synaptic device array should
perform BP and weight updates as well as FP for on-chip
training. However, there are some additional considerations
when implementing on-chip training with hardware. Since the
VMM by synapse array is an analog computation, it is
important to determine how to implement the peripheral
circuits that control the synapse array (analog or digital).
While analog peripheral circuits can power-efficiently interact
with the synapse array, digital peripheral circuits can provide
high precision. In addition, when updating the weights, it is
important to update considering the non-ideal characteristics
of the synaptic device. Most electronic synaptic devices have
nonlinear and asymmetric conductance response, and there
are many reports that these non-ideal characteristics can
degrade the training accuracy [57, 72, 73]. In addition, the
number of conductance levels that can be represented by
synaptic device is limited, and thus exhibits low precision
compared to the weights that can be expressed in software.
Even the analog peripheral circuits that control the electronic
synaptic device arrays have non-ideal effects, which result in
degradation of the neural networks [74]. To enable low-power
operation while handling the non-ideal effects of devices,
various approaches using modified weight-update rules have
been attempted, such as crossbar-compatible weight update
and Manhattan weight update [57, 59]. It also includes
simplification of the activation functions that can be
implemented with simple electronic circuits [75]. Due to
these non-ideal effects and simplification of the BP rule, the
performance of HW-DNNs for on-chip training still remains
in simple learning tasks such as the MNIST data set.
Nonetheless, the HW-DNN for on-chip training is important
because it has tolerance to the device variation and can be
constantly trained. There have been several studies of the
implementation of HW-DNNs for on-chip training, and we
review these.

1) IBM’s 500×661 PCM array.
Burr et al used 2-PCM devices as a synapse and

implemented a three-layer perceptron network [57]. The
neural network consists of 528 input neurons, 250 neurons
in the first hidden layer, 125 neurons in the second hidden
layer, and ten output neurons, and was trained by a subset
(5000 examples) of the MNIST data set. The size of the
fabricated PCM array is 500×661, and the total number
of PCM devices used for neural networks including bias
neurons is (529×250+251×125+126×10)×
2=329 770. The weights represented by the conductance
of the PCM devices are updated by the BP algorithm and
crossbar-compatible weight-update method. However, the
VMM is performed by software. Since the weight update

is determined by the product of the error delta value and
presynaptic neuron value, how to perform this computa-
tion efficiently is important. In a crossbar array, when a
presynaptic neuron value and an error delta value are
inputted to one node and another node, respectively, the
conductance can be immediately changed by the voltage
difference between the two nodes. As shown in
figure 8(a), they divided the magnitude of presynaptic
neuron and error delta values by four pulses, so the
conductance is changed by the time overlap between two
pulses, representing presynaptic neuron and error delta
values, respectively. When the crossbar-compatible
weight-update method is used, the classification accuracy
does not degrade compared with the case of using
software-based conventional weight update (figure 8(b)).
However, it has been shown that the nonlinearity and
asymmetry of the conductance response of the electronic
synaptic device can significantly degrade the classification
accuracy (figure 8(c)). To mitigate such asymmetry of the
conductance response, they proposed the occasional reset
process with enough frequency. In addition, they
simulated the effects of various non-idealities of the
conductance response by simulation, such as stochasticity,
variable maxima and the presence of nonresponsive
(conductance is not changed by the applied pulses)
devices. In their later works, additional research was
conducted on the training power and speed estimation,
design considerations of peripheral circuits and other
factors that could affect the implementation of the HW-
DNNs. [57, 75–78].

2) UCSB’s 12×12 memristive crossbar array.
Prezioso et al fabricated a memristive crossbar array

with 12×12 devices, and implemented a perceptron
network [59]. At each cross point, an Al2O3/TiO2−x

memristor was used with low variability. The perceptron
network consists of ten input neurons and three output
neurons including a bias neuron in the input layer, and is
trained by 30 binary images consisting of 3×3 pixels.
As in the previously reviewed work, two devices are
required for a synapse, so the total number of synapses is
10×3×2=60. This synapse array performed the
VMM, and the weight updates are also conducted within
the synapse array. Since the only hardware is the synapse
array, the synaptic current was measured for each
column of the synapse array, and then the subtraction
of the synaptic current between adjacent columns was
performed by external electronics (figure 9(a)). For
weight update, they applied a Manhattan update rule
[79]. In this rule, whether to increase or decrease the
weights is determined by the sign of the product of the
presynaptic neuron and error delta values (figures 9(b)
and (c)). It is easy to implement in hardware because
only a single pulse is required for each weight update.
Due to the non-ideal characteristics of the synaptic
device, such as nonlinearity of the conductance response,
applying multiple pulses for accurate weight update can
be impractical in actual electronic devices [80]. Although
the size of the neural networks is small and the training

11

Nanotechnology 30 (2019) 032001 Topical Review



set is simple, they have shown well-trained results using
a fabricated memristive crossbar array.

3) Tsinghua’s 128×8 RRAM array.

Yao et al demonstrated a perceptron network for face
recognition with a 128×8 RRAM array [81]. The array
consists of a RRAM with a TiN/TaOx/HfAlyOx/TiN stack
and transistor (1T-1R). This RRAM stack showed a bi-
directional conductance response with respect to the number of
applied pulses, but it is nonlinear. The perceptron network was
trained by nine grayscale face images, which are a cropped and
subsampled subset of the Yale Face Database (figure 10) [82].
The training process is divided into two parts: inference and
weight update. After the synaptic current is measured in the
synapse array, it is applied to the software-based activation
function. In the weight update, there are two weight-update
methods: write-verify and without write-verify (figure 10).
When using the write-verify method, the weight update is
conducted considering the magnitude of the product of the
presynaptic neuron and error delta values. Then, the calculated
weight is stored as the conductance of the synaptic device
through the verify process. On the other hand, when the
method without the verify process is used, only the sign of the
product of the presynaptic neuron and error delta values is
considered, which is the Manhattan update rule. While the
write-verify scheme could achieve higher classification perfor-
mance, the without verify scheme could simplify the control
system. As a result of face image classification, the accuracy
rates were 88.08% and 85.04% for the write-verify scheme and
the without verify scheme, respectively. In addition, the total
latency of the without verify scheme is lower than that of the
write-verify scheme, but the opposite result was shown in the
case of energy consumption. This means that the write-verify
scheme needs more programming pulses at each epoch, but
fewer iterations are required for training.

2.2.3. Requirements.

1) Nonlinearity and asymmetry.
According to the reported papers, nonlinearity and

asymmetry of the conductance response are important

factors when performing on-chip training [57, 83–89].
However, there is no standard and clear measure to
compare nonlinearity in various synaptic devices in which
the conductance varies nonlinearly with the applied pulses.
Here, we improve the conventional model in [30] to better
represent the conductance response of synaptic devices. To
obtain a model that fits the conductance response of
synaptic devices, we use the equations that express the
conductance change (δG) in [30]. They are expressed as
follows for long-term potentiation (LTP) and long-term
depression (LTD), respectively:
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where Gmax and Gmin are the maximum and minimum
conductance values in the conductance response curves
measured from a synaptic device, respectively. α is a fitting
parameter and β is a nonlinearity factor. Because
equation (1) represents the conductance change when pulse
is applied in LTP, we can derive equation (3) as follows:
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where n is the discrete pulse number. Here, we
approximate equation (3) as follows to be transformed
into the derivative form
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where x is the continuous pulse number. Although the
pulse number (n) is basically a discrete value, we regard
it as a continuous pulse number (x). Solving differential

Figure 8. (a) In a crossbar, efficient learning requires neurons to update weights in parallel, firing pulses whose overlap at the various NVM
devices implements training. (b) Computer neural network simulations show that a crossbar-compatible weight-update rule is just as effective
as the conventional update rule. (c) Bounding G values reduces neural network training accuracy slightly, but uni-directionality and
nonlinearity in G-response strongly degrade accuracy. Figure insets map NVM-pair synapse states on a diamond-shaped plot of G+ versus
G− (weight is vertical position) for a sampled subset of the weights. © [2014] IEEE. Reprinted, with permission, from [57].
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equation (4), the conductance response in LTP can be
expressed as a function of the continuous pulse number
(x) as follows:
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In the same way, we can obtain the equation for LTD as
follows:
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Equations (5) and (6) show an improved model from the
model in [30] and explain the LTP and LTD conductance

Figure 9. (a) Implementation of a single-layer perceptron using a 10×6 fragment of the memristive crossbar. (b) Example of the
classification operation for a specific input pattern (stylized letter ‘z’), with the crossbar input signals equal to +VR or −VR, depending on the
pixel color. (Read and write biases were always VR=0.1 V and VW

=1.3 V, respectively) (c) Example of the weight adjustment in a
specific (first positive) column, for a specific error matrix. At the step shown, only the synapses whose weights should be increased (marked
by ‘1’ in the table on the left) are adjusted, that is, the memristor conductances G G G G G, , , and1,1 1,2 1,5 1,6 1,9

+ + + + + are being increased. [59]
(2015) © 2018 Springer Nature Limited. All rights reserved. With permission of Springer.

Figure 10. (a) Training process flow chart. In this demonstration, a batch learning model is used to accelerate the converging speed. Here, ‘n’
represents the number of the pattern, ranging from 1–9, ‘i’ implies the index of a pixel of an input pattern and can be defined from 1–320, ‘j’
is the number of output neurons, that is 1–3. Correct classification during the inference phase means the active function value of a matching
class of the input pattern is greater than the other two classes. This network converges when all training patterns are correctly recognized.
(b) Schematic of parallel read operation and how a pattern is mapped to the input. (c) Nine training images, which are a cropped and
subsampled subset of the Yale Face Database. Reproduced from [81]. CC BY 4.0.
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response, respectively. Since the conventional model in [30],
expressed as equations (1) and (2), represents only the
conductance change at a certain conductance state, it is not
suitable for representing whole conductance response. When
the conductance response is represented by using the
conventional model, the nonlinearities are different according
to the number of conductance levels even if β is the same
(figure 11(a)). However, when equation (5) is used for
representing the conductance response, the nonlinearities are
the same if β is the same regardless of the number of
conductance levels (figure 11(b)). Equation (5) also success-
fully fits the conductance response of various device types, as
shown in figure 11(c) [83].

When the conductance response is nonlinear, it is
difficult to perform accurate weight updates and this leads to
loss of accuracy. Thus, there has been a report that
conductance response should be linear for on-chip training
performance, as shown in figures 12(a) and (b). Subsequently,
a device with near-linear conductance response when the
identical pulses are applied was reported, as shown in
figures 12(c) and (d) [85]. Another paper has reported that the
conductance response can be linearly improved by adding a
resistor to the synaptic device, as shown in figure 12(e) [88].
Similarly, asymmetry of the conductance response between
LTP and LTD is also an important parameter because it can
degrade the on-chip training performance [57]. However,
most HW-DNNs use two devices per synapse to represent a
negative to positive weight, so only the LTP or LTD curve of
the devices can be used to improve the asymmetry.

In contrast to on-chip training, nonlinearity is not such an
important issue when performing off-chip training. It has been
reported that the precise adjustment of weights can be
individually programmed in the case of NOR flash [90] with
mixed signal processing and tunable conductance. In
addition, even for RRAMs with nonlinear conductance
response, precise tuning can be used to adjust the weight
accurately (less than 1%) without considering nonlinearity
[91]. The high classification accuracy of the MNIST data set
was obtained with this method. However, if the neural
networks are very large with very deep layers, the method
might be a challenge to adjust the weights to synaptic devices
individually. As an alternative to the precise tuning of entire

weights with high precision, the 1-bit weights can be used
without significant accuracy loss for the MNIST dataset
classification [69].

2) Weight precision.
The necessary weight precisions when performing

on-chip training are somewhat different for each report
[69, 92, 93], as shown in figure 13. However, a weight
precision of more than 5-bit (32 levels) is commonly
required to implement on-chip training without sig-
nificant degradation of accuracy. By having stable and
high weight precision from the minimum to maximum
conductance makes it possible to update the weight
more finely, which is related to the learning rate of the
BP algorithm.

In off-chip training, there is a method to precisely
tune the conductance of NOR flash or memristive
devices [90, 91]. However, peripheral circuits are
required for tuning precise conductance to synaptic
devices, especially for sensing the current. The
peripheral circuit can consume a lot of power and time
in very large DNNs. On the other hand, BNN which has
1-bit weight precision was reported, as shown in
figure 14 [69]. The weights are trained first with 32-
bit floating point precision in software, and then
the weights are binarized with small accuracy loss
in the case of the MNIST dataset classification.
However, the performance of BNNs can still be a
challenge in large-scale neural networks [63].

3) Dynamic range.
Dynamic range is defined as the ratio between the

maximum and minimum conductance of the synaptic
devices. It is not necessary to use the on/off ratio of
synaptic devices as the dynamic range. In other words,
the dynamic range can be a specific range of
conductance used to represent the weights. When
implementing on-chip training, high weight precision
is required for better performance of HW-DNNs. If the
conductance response of a synaptic device has a large
dynamic range, then the number of conductance levels
(weight precision) can be large. Similarly, in off-chip
training, the conductance of synaptic devices can also
be finely tuned within the large dynamic range when

Figure 11. (a) Conductance responses with respect to the number of conductance levels when β is 4, in the case of using conventional models
in [30]. (b) Conductance responses with respect to the number of conductance levels when β is 1, 3 and 4, in the case of using the improved
model. (c) When using the improved model, conductance response for several types of synaptic devices, especially RRAM [83], FET-type
[53], gated Schottky diode (GSD) [85] and ideal linear conductance response.
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transferring weights. The dynamic range can also be
modified to lower the variation of synaptic devices, or
have a more linear conductance response. Note that the
endurance characteristic of a synaptic device can be
degraded if the dynamic range is too large. Thus, the
proper dynamic range (generally, max/min ratio more
than ten and less than 100) for the characteristics of a
synaptic device is required when performing on-chip
and off-chip training [92].

4) Reliability: endurance, retention and variation.
The synaptic devices should endure as many pulses

as possible for high learning performance. According to
the reported papers [50, 69], if synaptic devices can
endure more than 10000 pulses, there is no significant
accuracy loss for the MNIST data set in online BNN, as
shown in figure 15. Similar to endurance, the retention
characteristics of a synaptic device can significantly
affect the accuracy of on-chip training. If the weights of
synaptic devices are changed during training or
inference, this causes significant accuracy loss. Varia-
tion of synaptic devices such as device-to-device
variation, cycle-to-cycle variation and pulse-to-pulse
variation also affects the accuracy of the HW-DNNs for

on-chip training, as shown in figure 16 [50, 94].
In addition, the aforementioned characteristics are

important when performing off-chip training. The
weights are pre-trained in software and then transferred
to the synaptic device array. Therefore, the synaptic
devices have to retain the information of pre-trained
weights for a long time while enduring many pulses
[50]. In addition, the several variations prevent the
conductance of the device from being tuned to the
expected value, which leads to a significant accuracy
loss, as shown in figure 17 [90, 92].

5) Overall characteristics required for synaptic devices.

As mentioned above, table 2 summarizes the desirable
performance metrics for synaptic devices [50]. As a synaptic
device, it would be appropriate to have as small a dimension as
possible, and as low an energy consumption as possible.
However, other metrics such as the number of conductance
levels (weight precision), dynamic range, retention and
endurance can vary considerably depending on the learning
algorithms (bio-inspired and software-based learning algo-
rithms) and the applications (unsupervised, supervised, off-chip
and on-chip training) of the neural networks. For example, the

Figure 12. Researches of a neural network affected by nonlinearity of synaptic devices and to improve nonlinearity. (a) and (b) show that
linear conductance response has a good performance. (a) © [2014] IEEE. Reprinted, with permission, from [57]. (b) © [2018] IEEE.
Reprinted, with permission, from [87]. (c) and (d) are I–V characteristics and conductance response of the GSD, respectively.© [2017] IEEE.
Reprinted, with permission, from [85]. (e) shows that nonlinearity can be improved with an additional resistor. © [2017] IEEE. Reprinted,
with permission, from [88].
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linearity of the conductance response can be less important in
off-chip training of HW-DNNs compared to on-chip training of
HW-DNNs because iterative programming with a write-verify
scheme can be used. In addition, these metrics cannot be
independent of each other. If a pulse-to-pulse variation is high
in a synaptic device, a required dynamic range needs to be
larger than that in a synaptic device with a low pulse-to-pulse
variation. In other words, a higher pulse-to-pulse variation
requires a larger difference between adjacent conductance
levels, resulting in a larger dynamic range in a synaptic device
at the same number of conductance levels. A larger dynamic
range more severely degrades the endurance characteristic,
because a larger current, larger bias, or longer pulse width are

required for the conductance change. Thus, the pulse-to-pulse
variation needs to be as small as possible. Note that the number
of program/erase cycling (endurance) of the conventional flash
memory devices as an example is significantly limited because
the threshold voltage shift is several volts (large). The
endurance of a synaptic device can be significantly increased
compared to that of conventional flash memory devices
because relatively small conductance changes are required for
each weight update. Therefore, it is important to design an
HNN considering the learning algorithms, applications of the
neural networks and inherent device characteristics according
to the type of synaptic device.

2.3. DSNNs

SNN implementation has many advantages with regard to
energy and latency compared to non-spiking implementation.
However, because the training algorithms of SNN are less
mature than those of SW-DNNs, SNN mimicking a biological
algorithm such as STDP generally has low accuracy. To
overcome this inferior accuracy of SNN, there have been
some studies on the conversion from SW-DNNs to SNN and
BP using spike [29, 95–100, 104].

2.3.1. Conversion from SW-DNNs to SNN. There are various
methods of neural coding and neuron model that are used to
convert SW-DNNs to SNN. In many studies, rate coding and
temporal coding are usually used as neural coding because
they are straightforward and simple information coding
methods. In addition, I&F and LIF neuron models are
usually used as a neuron model due to their biological
plausibility. Several studies on this topic will be briefly
introduced in the order of neuron models.

1) I&F neuron model. The I&F neuron model is the simplest
neuron model in SNN. It sums input signal in membrane
potential and fires when the membrane potential is higher
than the threshold of a neuron. It is well known that the
relation between the input spike rate and output spike rate

Figure 13. Accuracy with respect to the weight precision. © [2018] IEEE. Reprinted, with permission, from [87]. © [2018] IEEE. Reprinted,
with permission, from [93].

Figure 14. Accuracy of ideal software neural networks and binarized
neural networks (BNNs). © [2016] IEEE. Reprinted, with permis-
sion, from [69].
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in an I&F neuron using rate coding is a rectified linear unit
(ReLU). Cao et al converted CNN to spiking CNN using
I&F neuron and rate coding [95]. They used linear
subsampling for the pooling layer and ReLU for an
activation function. Conversion from SW-DNNs to SNN
in this way results in accuracy drop because SW-DNNs
and SNNs are not exactly the same in some aspects such as
max firing rate and discrepancy of firing rate. Diehl et al
proposed weight normalization to prevent the degradation
of conversion accuracy [29]. The main idea of presented
weight normalization is to rescale the weight so that the
firing rate of each neuron is below the max firing rate. This
can reduce the accuracy drop without searching the ideal
hyperparameters in SNN. Rueckauer et al formulated the
errors introduced by the reset method and reported
implementation of the max-pooling layer, batch normal-
ization and softmax using spiking neurons [96].

As rate coding requires several spikes to represent a
single value, temporal coding is a more energy-efficient
coding [97]. Because I&F neuron dynamics can only
distinguish whether or not the input spikes precede the
output spikes, it is not suitable for temporal coding.
Therefore, Mostafa used I&F neuron with exponentially
decaying synaptic current kernels [97]. He converted the
exponential term generated by the exponentially decaying
synaptic current kernel to the variable parameter. As a
result, this gives a piecewise linear equation. Mostafa
argued that temporal coding enabled fast processing
because the network could be stopped after one of the
output neurons created a spike.

2) LIF neuron model.

The LIF neuron model is similar to the I&F neuron
model but has a leaky path at the membrane node.
Hunsberger et al solved LIF neuron dynamics using rate

Figure 15. For on-chip training, (a) accuracy loss with different endurances of synaptic devices and (b) zoom-in of (a). © [2016] IEEE.
Reprinted, with permission, from [69].

Figure 16. With 6-bit precision and different nonlinearity of synaptic devices, accuracy affected by (a) conductance variation, (b) device-to-
device variation and (c) cycle-to-cycle variation. Linear devices are more tolerant than nonlinear devices. © [2018] IEEE. Reprinted, with
permission, from [50].
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coding assuming constant input current and trained the SW-
DNNs with noise [98]. The transfer function of SNN using
rate coding and LIF neuron has an infinite derivative point.
Because the infinite derivative point deteriorates the gradient
descent training method, they suggested a soft LIF transfer
function and used it for training. In addition, they showed that
accuracy drop in conversion can be alleviated by using noise
in training. Lee et al improved the accuracy by formulating
the transfer function of LIF neurons from membrane potential
and a series of spikes [99]. They formulated the transfer
function of LIF neurons with WTA and showed 99.31% test
accuracy in MNIST dataset test accuracy.

2.3.2. BP using spike. Neftci et al reported an event-driven
random BP [100]. It uses LIF neuron with rate coding and
translates the firing rate from the gradient descent formula to a
spike-event-driven weight update. The weight update occurs
whenever the input spike event happens by the number of
errors propagated in the backward path. If the weights of the
feedback path are the transpose of the weights of the forward
path, such as the conventional BP, FP and BP cannot occur at
the same time. Therefore, they used a feedback method called
direct feedback alignment or skipped random BP [101, 102],
which is a variant of random BP [103]. Error coding neuron
generates spikes that are proportional to the difference
between the output from the last layer and the actual correct
answer, and the spikes are transmitted through a fixed random
synapse directly connected to the neuron in each layer. In
addition, Bengio et al presented equilibrium propagation, an
energy-based neural network that uses Hopfield energy [104].
By explaining the equivalence of equilibrium propagation and

STDP, they showed that a gradient descent can be performed
in the SNN using the STDP algorithm.

3. Synaptic devices for implementing ANN

3.1. RRAM

Memristor is a two-terminal NVM device based on resistance
switching [105]. Many kinds of memristors have been
reported as a candidate for synaptic devices, since they are
easy to construct into a matrix-type neural network. Among
them, RRAM is a metal-insulator-metal (MIM)-type device
having a switching characteristic through resistance change.
That is, when different voltages are applied to each metal
node, the current flows through the insulator and the amount
of this current can be changed by the set and reset operations.
Through the set operation, the resistance changes from high
resistance to low resistance and changes from low resistance
to high resistance through a reset operation. It is divided into
unipolar and bipolar according to the polarity of the set and
reset voltage (figure 18) [106]. Switching mechanisms vary
widely depending on the type of insulating material, typically
filamentary switching. The set process is attributed to the
dielectric soft breakdown and creation of conductive fila-
ments, usually consisting of oxygen vacancies. The reset
process is attributed to the rupture of the conductive filament,
usually by the recombination of oxygen vacancies with
oxygen ions that migrated from the electrode/oxide inter-
facial reservoir [107].

From a neuromorphic system point of view, RRAM is
attractive in terms of simple structure, low power, CMOS
compatibility and scalability for high density. Seo et al

Figure 17. For off-chip training, accuracy loss with (a) pulse-to-pulse variation, (b) device-to-device variation of synaptic devices. © [2017]
IEEE. Reprinted, with permission, from [92].
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implemented analog memory, synaptic plasticity and STDP
functions using RRAM [108]. To mimic synaptic weight
changes, a titanium oxide bilayer was applied to achieve
interface resistance switching. Multi-level conductance con-
trol was realized by causing oxygen movement through two
layers with different oxygen concentration of TiOx/TiOy.
When a positive voltage is applied to the system, oxygen ions
move from the TiOy to the TiOx layer, reducing the effective
thickness of the layer and increasing the conductance. On the
other hand, when a negative voltage is applied to the system,
the effective thickness of the layer expands and the con-
ductivity decreases.

Human memory is not permanent, but is strengthened
into long-term memory (LTM) by repeated stimulus, and it
easily disappears into short-term memory (STM). Forgetful-
ness is not always a disadvantage because it creates a space
for storage for more important memories. Chang et al
experimentally showed that the retention loss of nanoscale
memristor devices is similar to memory loss in biological
systems [109]. By stimulating the memristor with repeated
voltage pulses, they implemented STM to LTM transition.
The memristor device consisted of a W bottom electrode, Pd
top electrode, and a WOx film sandwiched in between. After
repeated stimulation, there were sufficient oxygen vacancies
in the switching layer, resulting in much improved retention
along with the increase in conductance.

The filament formation process of RRAM is inherently
unexpected and difficult to control due to the stochastic nature of
filamentary switching. In particular, it can be a disadvantage in
neuromorphic systems that require gradual current changes (i.e.
weight updates). Yu et al reported RRAM with multilevel
resistance states, which were obtained by varying the program-
ming voltage amplitudes during the pulse cycling using multi-
level metal oxide with the structure of TiN/HfOx/AlOx/Pt,
TiN/Ti/AlOx/TiN, and TiN/TiOx/HfOx/TiOx/HfOx/Pt
stacks, respectively [47, 52, 110]. They also reported high
endurance (105 cycles) and low energy consumption per
operation (sub-pJ). For pulse programming, no compliance
current was enforced, which is possible because of the very short
pulse width (∼50 ns). Thus, excessive damage to the cell during

the setup process was much reduced compared to the DC sweep
case. Also, a stochastic compact model was developed to
quantify the gradual resistance modulation and was applied to a
large-scale artificial visual system simulation.

To implement multi-level conductance, Woo et al ana-
lyzed the response of identical pulses on a filamentary RRAM
system with an Al/HfO2/Ti/TiN stack to implement the
synapse function in neuromorphic computing systems [111].
The introduction of the AlOx barrier layer was found to be
advantageous for analog memory in enabling linear poten-
tiation behavior as a function of the number of pulses due to
the steadily expanded conductive filament. They also
emphasized that using identical pulses can reduce the burden
on the peripheral circuit. In the same group, the symmetric
conductance change characteristics of the TiOx-based RRAM
were confirmed through the hybrid pulse scheme [112]. To
achieve various conduction levels, interfacial resistance
switching by redox reaction was adopted in the Mo/TiOx

stack. To improve the conductance variation symmetry,
constant voltage and current pulses were applied during the
enhancement and depression conditions, respectively. The
mechanism analysis for the gradual reset phenomenon in
Al2O3 RRAM was reported [113]. The reset was observed to
be gradual when a significant number of vacancies were
generated in the dielectric during the set event. In order to
create a large number of vacancies in the dielectric, the
forming step was divided into three parts (multi-step
forming).

Since RRAM can be easily triggered by the stochastic
nature of the oxygen vacancies, the effect of error on the
system has been actively studied for neuromorphic systems.
Zhao et al investigated the statistical behavior of read current
noise and retention in a 1 kb filamentary analog RRAM array
[114]. A standard multi-layer perceptron was used for the
system and the MNIST data set was used for the recognition
rate. They said that all conductance distributions follow a
normal distribution and the standard deviation increases lin-
early with the square root of time. In addition, they empha-
sized that the retention effect is larger than the noise effect in
terms of recognition rate error. Tosson et al provided a

Figure 18. (a) Schematic of MIM structure for metal-oxide RRAM, and schematic of metal-oxide memory’s I–V curves, showing two modes
of operation: (b) unipolar and (c) bipolar. © [2012] IEEE. Reprinted, with permission, from [106].
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modeling framework to compute the effect of soft errors on
the system accuracy [115]. They said that the soft error of
RRAM is caused by the diffusion of the oxygen vacancies,
unbalanced programming pulses and manufacturing defects.
Their simulation results showed that the system accuracy
degraded from 91.6% to 43% due to the RRAM reliability
soft errors. They also proposed methodologies for auto-
matically detecting and fixing the degradation in the system
accuracy. Using these methodologies, the system accuracy of
their case-study system was increased from 43% to 91.6%.

Ambrogio et al introduced a new synaptic circuit con-
sisting of a one-transistor/one-resistor structure [116, 117]. A
fully connected neuromorphic network was simulated with
on-chip unsupervised pattern learning and recognition. Only
one transistor performs two functions for communication of
the pre- to the postspike and weight update. With randomly
alternated presentation of pattern and noise, on-chip learning
was implemented. Prezioso et al demonstrated an STDP
behavior that ensures self-adaptation of the average memristor
conductance [118]. The synaptic weight change of the
synapse was considered to be dependent not only on the
presynaptic and postsynaptic signal, but the initial value of
the synapse. However, they showed an STDP behavior that
ensures self-adaptation of the average memristor conductance,
making the plasticity stable. At least it is insensitive to the
initial state of the device in a simple spike network.

For an energy- and cost-efficient neuromorphic computa-
tion hardware implementation, Wang et al proposed 3D
synaptic architecture based on self-rectifying Ta/TaOx/TiO2/Ti
RRAM [119]. The analog synaptic plasticity was simulated
using the compact models. A study involving more complex
circuits and various neuromorphic applications was performed
by Piccolboni et al [120]. A single synapse was composed by
connecting one transistor and a stacked vertical RRAM
(VRRAM) to realize analog-like conductance response with
only two distinct resistive states of low resistance state (LRS)
and high resistance state (HRS). A single-layer SNN was
simulated for real-time auditory pattern extraction and CNN
was demonstrated for the recognition of handwritten digits.
Given a specific resistance distribution, the recognition rate
varies with the number of stacked VRRAM cells, and they
reported that more than 12 VRRAM cells are needed for a
recognition rate of over 98%. Li et al developed a four-layer
HfOx-based 3D vertical RRAM with FinFET selector [121]. A
system-level simulation was implemented with an unsupervised
WTA visual system consisting of stochastic synapses and LIF
neurons. They reported that the 3D architecture reduces inter-
connect RC effects and avoids long sneak leakage paths of the
2D architecture. Li et al introduced 3D RRAM structure using
ternary levels that can overcome nonlinearities caused by pre-
mature ‘analog’ synapses [122]. They proposed a new operation
scheme that combines the selected lines and the word-lines with
an input vector and designs all bit-lines as weighted-sum out-
puts. They analyzed that the proposed 3D VRRAM imple-
mentation has a larger write margin for weighted sum/weight
update, smaller latency and energy consumption for weight
update compared to 2D structure.

3.2. CBRAM

CBRAM (atomic bridge) technology, which is also called
programmable-metallization-cell memory, is known as one of
the available memristor-based nonvolatile devices in con-
structing neuromorphic systems. Unlike the RRAM described
previously, which is implemented using memristive materials,
the conductance change of the CBRAM is achieved by using
electrochemical characteristics [123]. To explain the basic
operation of the CBRAM in more detail, it can be said that
cations injected from one active electrode migrate to an
electrolyte with a high ionic conductivity, as shown in
figure 19(a). The formation of the active conductive pathway
(metallic filament) between the two electrodes causes an LRS
(set) of the device, while the insulation due to filament
breakdown results in an HRS (reset) of the device, as
described in figures 19(b) and (c). The formation and prop-
erties of the conductive filaments in CBRAM depend on the
type of active conductivity. The implementation of multi-
level resistance states caused by this analog and incremental
change in conductance is commonly used to make synaptic
plasticity in neuromorphic systems similar to other memris-
tor-based devices. The ability to store multiple levels on a
single storage device is one of the most important factors in
emerging memory technology, and the multi-level capability
can be achieved by controlling the programming current in
the CBRAM device. In terms of scalability as an advantage of
CBRAM, the threshold voltage and resistance parameter in
the ON state are independent of the device size. However, the
parameter determining resistance in the OFF state is depen-
dent on the setting resolution, and the scalability limit is
known to be in the range of 20 nm or less. Along with these
properties, the advantages of the CBRAM in terms of its
application to neuromorphic systems are fast speed (∼ns) and
very low energy consumption (sub-pJ programming).

However, the CBRAM has a crucial disadvantage with
the serious variability of the resistance modulation, which
necessitates additional engineering requirements. Even the
CBRAM can have poor retention characteristics compared to
RRAM due to self-diffusion of the metal ion. In addition, the
formation and destruction processes of the conductive fila-
ment are inherently abrupt and asymmetric. Although the
required operating characteristics of the device may vary
depending on the learning algorithm of the neuromorphic
system, the incremental programmability maintaining a con-
stant interval is well known as a factor that can have an effect
on the learning accuracy.

Many studies on CBRAM have highlighted the merits of
application to synaptic devices, and there have been many
researches on evaluating the feasibility of using a single
device. Jo et al demonstrated CBRAM consisting of a co-
sputtered Ag and Si active layer with a proper Ag/Si mixture
ratio gradient. This structure has Ag-rich and Ag-poor regions
corresponding to high and low conductivities, respectively.
The characteristics of the memristor device have shown that it
can support important synaptic functions such as STDP [124].
Liu et al implemented an effective way to control the growth
of the conductive filament using metal nanocrystals (Cu)
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covering the bottom electrode (Pt) in CBRAM, which has a
Ag/ZrO2/Cu/Pt structure. Conductive filament can easily
grow along the direction of metal nanocrystals, and their
formation has the same path during repetitive switching
cycles. This work demonstrated the possibility of controlling
the conductive filament formation pathway using metal
nanocrystals or other field-intensive initiators [125]. Ohno
et al demonstrated the synaptic behavior of CBRAM using
Ag2S with experimental evidence of short-term plasticity and
LTP characteristics, which are the key features of a biological
synapse. Temporary changes in conductance over time were
observed by less frequent input stimuli, while persistent
enhancement was achieved by more frequent input stimuli
[126]. Tsuruoka et al demonstrated that quantized con-
ductance of CBRAM constructed with Ag/Ta2O5/Pt can be
achieved by applying the pulses having various amplitudes.
LTP behavior occurs by applying consecutive input pulses at
periodic intervals of different times. The realization of these
devices is meaningful in that they are compatible with the
CMOS manufacturing process [127, 128]. Roclin et al
referred to the effects of sneak paths and parasitic metal line
resistance in arrays of CBRAM operating as synapses for
SNN. They showed that the structure of the crossbar array has
a high energy consumption with high leakage during the
transition of state, and an increased switching time due to
voltage loss along the lines. Using the CBRAM in a digital
manner, sensing the state of each CBRAM, can be a solution
to mitigate this problem [129]. Nayak et al emulated the
synaptic plasticity such as STM and LTM by using CBRAM
using Cu2S, and studied the sensitivity of the device towards
the moisture and temperature. They demonstrated that the
LTM is achieved much faster at elevated temperatures with

shorter or fewer number of inputs. This work was the first
temperature-dependence investigation of the CBRAM, and it
is considered a study of synapses closer to the human
brain [130].

In addition to these studies about the characteristics of a
single device, there have also been modeling researches to
determine the feasibility of CBRAM in high-level hierarchy.
Yu et al developed a physical model reflecting the switching
dynamics of CBRAM. The transient characteristics of
CBRAM are in good agreement with the experimental result
using Cu/SiO2 and Ag/Ge0.3Se0.7, and the time-dependent
switching process of CBRAM is quantified. The use of this
model paves a more sophisticated way for mimicking
synaptic functions using CBRAM and verifying the feasibility
of STDP behavior in neuromorphic systems [131]. Related
study shows that the SET transition in CBRAM that becomes
stochastic under weak programming conditions was measured
statistically and modeled for a WTA network. This study has
shown that binary synapses can be used effectively in neu-
romorphic computing. In addition, the relaxation of con-
straints for designing continuous multi-level states implies the
possibility of widening the choice of materials for synaptic
devices [132].

Recent research trends in CBRAM have focused on
implementing neuromorphic systems using various architectures
rather than as a single device. Suri et al proposed the neuro-
morphic system with Ag/GeS2/W structured CBRAM as bin-
ary synapses, and used the STDP learning rule for unsupervised
learning [133]. They showed various strategies for 1R and 1T-
1R-based CBRAM configuration [134], and proposed a new
methodology to design a low-power, low-footprint hardware
architecture exploiting the intrinsic HRS variability of CBRAM

Figure 19. (a) Schematic illustration of the CBRAM switching mechanism. ON state is the LRS of the device caused by metallic filament.
OFF state is the HRS of the device caused by filament breakdown. (b) Typical current–voltage characteristic of a CBRAM device. (c) Typical
resistance–voltage characteristic of a CBRAM device. © [2005] IEEE. Reprinted, with permission, from [123].
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[135]. Gamrat et al implemented neuromorphic circuits suitable
for embedded applications using CBRAM [136]. DeSalvo et al
implemented a large-scale energy-efficient neuromorphic system
with stochastic binary synapses based on CBRAM. CBRAM
offers specific key features for applications as dense memory
configuration and solving the field-programmable gate array
(FPGA) leakage issue [137]. Mahalanabis et al demonstrated the
possibility of tuning the ON state resistance of CBRAMwith the
analog STDP rule for neuromorphic applications [138].

Most of the above-mentioned studies show examples of
CBRAM used as synaptic devices, since the advantages of
CBRAM as a memristor are commonly highlighted in the
neuromorphic system. However, there are also some studies
that utilize the basic operating characteristics of CBRAM as
neurons and not synaptic devices. Palma et al presented a
methodology to design stochastic neurons using CBRAM.
Unavoidable intrinsic variability on the time-to-set and off-
state resistance of CBRAM were used to implement sto-
chastic firing of neurons. An additional circuit and a novel
self-programming technique for using CBRAM in I&F neu-
rons was also proposed [139]. Jang et al designed a novel
neuron circuit using a Cu/Ti/Al2O3-based CBRAM for
HNN. This CBRAM-based neuron has the advantages of
neuromorphic chip area and power aspects [140].

3.3. PCM

PCM, also known as PCRAM, is a type of nonvolatile RAM
[105]. PCM uses the characteristics of large difference in
electrical resistance of the phase of materials. The phase
change states of the PCM can be divided into two states,
which are amorphous and crystalline phases. The amorphous
phase (HRS) has high electrical resistance (HRS). On the
other hand, the crystalline phase (LRS) has a three to four
order lower resistance value than the amorphous phase. PCMs
should be prone to transition between the amorphous and
crystalline phases, so they need to have characteristics of low
melting temperature as well as crystallization temperature. In
order to meet this demand, Ge2Sb2Te5 (GST) is widely used
as the PCM.

The structure of a typical PCM cell is shown in
figure 20(a) [141]. A PCM cell consists of a top electrode,
PCM, heater and bottom electrode. The electrical pulse passes
through the PCM between the top electrode and heater, then
the current is crowded at the heater to PCM contact. This
crowded current makes heating power, which induces the
programmable region such as the mushroom boundary. The
phase change process of the PCM cell is divided into ‘set’ and
‘reset’. The set is to put the PCM cell into LRS state. Like-
wise, the reset is put the PCM cell into HRS state. The set
switching is a result of crystallization of the amorphous
matrix in the programming region. Therefore, the set pulses
must be able to heat above the crystalline temperature of
PCMs, but below the melting temperature. The reset switch-
ing is a result of amorphization of the crystalline phase by
melt quenching results. This is achieved when a large elec-
trical current is applied to melt the central portion of the cell.
Then, if the reset pulse is abruptly cut off, the melted material

quenches into the amorphous phase, which has the HRS.
Therefore, the reset pulses must be able to heat above the
melting temperature and abrupt cut-off is required for temp-
erature decrease. These pulse shapes are drawn in
figure 20(b). The set pulse is similar, with program operation
in conventional memory. The set pulse duration depends on
the crystallization speed of the material. In addition, the reset
pulse consumes large power because of the high melting point
of PCMs. Therefore, the reset operation accounts for most of
the power consumption in PCM applications.

PCM is a very attractive device in neuromorphic systems.
First, the PCM device has a simpler fabrication process and
simpler cell structure (two-terminal structure) than conven-
tional memory devices (such as DRAM, NOR, and NAND
flash) and general MOS devices. Therefore, it is competitive
in neuromorphic systems where many synaptic arrays are
needed (in the human brain, the number of synapses is more
than 1015). In addition, the PCM when used in synaptic
devices, has advantages such as good retention, endurance
and fast set speed. The retention (∼10 year) and endurance
(>108) [142] are important properties of synaptic devices.

On the other hand, there are limitations when PCM is
used for neuromorphic systems. The biggest disadvantage is
that the reset process is abrupt and difficult to control. In order
to bring the device back to the amorphous state, the whole
PCM must be sufficiently heated to melt and then should be
cooled rapidly. Thus, the conductance is abruptly changed
when a reset pulse is applied to the PCM device. This abrupt
conductance change is not suitable for the implementation of
an intermediate resistance in a synaptic device. In addition, in
the process of applying the set pulse, heat is generated
through the input signal to change the conductance and it is
difficult to uniformly control the generated heat. Therefore,
there is a variation between the device and the pulses, so the
reliability of the device is reduced. In a neuromorphic system,
the linear changes in conductance are more advantageous in
learning accuracy. However, the changes in conductance of
PCM is nonlinear. Moreover, a PCM device requires a
selector device when used in a synapse array. The selector
device is needed not only to select the synaptic device to
which the voltage is applied, but to block unwanted current
flow into the sneak path. A diode structure is widely used as
such a selector device.

The research group using PCM devices in the ANN can
be roughly divided into two groups that use the bio-inspired
learning algorithm and software-based learning algorithm.
These two groups focus on the NVM characteristics of PCM
devices for synaptic devices in neuromorphic systems.

Suri et al used a PCM device for a synaptic device in a
neuromorphic system based on the bio-inspired learning algo-
rithm. They enhanced the performance of classic GST-based
PCM devices by adding a thin HfO2 interface layer [143]. The
added HfO2 layer lowers the set/reset current of the PCM device
and increases the number of intermediate resistance states in the
potentiation process. System power consumption is decreased to
as low as 60 μW due to the increase in the number of con-
ductance potentiating points, while individual synaptic pro-
gramming power is decreased by more than 50% due to a
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decrease in the set and reset currents. In addition, Bichler et al
used 2-PCM devices for mimicking one synapse in an SNN
system. They used a simplified rule where LTP and LTD can
both be produced with a single invariant crystallizing pulse [45].
Through the STDP, a biological learning algorithm, a real-world
application of extracting complex patterns from recorded video
data was implemented.

Kuzum et al implemented the symmetric and asymmetric
STDP system with a single PCM device [144]. In that paper,
characteristics of gradual change in conductance are imple-
mented with different spike pulse schemes. The reset pulses of
varying amplitude were used for the reset process, and staircase
down pulses with varying amplitudes were used for a partial set
process. Since the programming current of the PCM device is
high, a short set/reset pulse is used for implementing a low-
power system. Eryilmaz et al implemented a small-scale
10×10 crossbar array with selected PCM cells. They simu-
lated a Hebbian STDP, which is similar to the biological brain
[145]. The initial resistance variation was tolerated by lots of
training epochs, but it consumes more energy.

Li et al investigated four different STDP forms, which
are the antisymmetric Hebbian update with potentiation, anti-
Hebbian update with potentiation, symmetric update with
depression and symmetric update with potentiation, by
applying programmed pre- and postsynaptic spiking pulse
pairs in different time windows [146]. And then, they
implemented those systems with a few PCM devices and
simulations using square spike strategy (based on heat accu-
mulation effect in PCM) [147].

Ambrogio et al presented a one-transistor/one-resistor
(PCM cell at 45 nm node) synapse for neuromorphic systems
[148]. This synapse is capable of STDP, and the learning
results of single- and multi-pattern are demonstrated. By
implementing a three-layer network, recognition accuracy is

reached at 95.5% with 256 neurons (the error rate is 0.35%).
The authors also proposed ways to reduce system power
consumption by spiking communication.

Sidler et al enhanced the performance of the SNN by
introducing an input encoding scheme that encodes the infor-
mation from both the original and complementary pattern [46].
Compared with the case using conventional 2-PCM synapse,
the number of devices are the same but the implementation is
simpler, since there is no need for additional circuits for sub-
traction. So SNN can be realized more simply. However, the
additional power consumption and area increase by peripheral
circuits required to construct the complementary pattern inputs
are not well addressed, making it difficult to directly make a
comparison with the conventional 2-PCM synapse.

Ren et al improved the performance of PCM using O-Ti-
Sb-Te (OTST) materials [149]. By reducing the oct-TCAM
number in OTST, they could control the crystallization rate.
Using this technique, linear conductance change, multi-bits
(∼8bits) and large on/off ratio (∼102) were achieved.

Burr et al used 2-PCM devices for one synaptic device
based on the software-based learning algorithm for storing the
synaptic weights, such as G+, G− [57]. In that paper, they
explored the effects of non-ideal characteristics of synaptic
devices on the recognition accuracy of neural networks. The
analyzed non-ideal properties are nonlinearity, stochasticity,
varying maxima, asymmetry between increasing/decreasing
responses and nonresponsive devices at low or high con-
ductance. Among these properties, the nonlinearity and
asymmetry characteristics of synaptic devices cause a great
loss of accuracy in neural networks. PCM devices have the
nonlinear and asymmetric conductance change characteristics
in the potentiation and depression process. Moreover, uni-
directional changes in conductance degrade the accuracy of

Figure 20. (a) Cross-sectional schematic of the conventional PCM cell. Current confined at the heater electrode and PCM contact results in a
mushroom-shaped programmed region. (b) Temperature profile for reset and set switching, and read-out process. © [2010] IEEE. Reprinted,
with permission, from [141].
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the neural networks. Therefore, symmetric and bi-directional
conductance changes are required.

3.4. Spin-based

Recently, spin-based memories have emerged as one of the
candidates in NVM technology. The representative examples
of the spin-based memories are STT and spin-obit torque
(SOT) MRAM. The structure of conventional STT-MRAM is
based on a magnetic tunnel junction (MTJ) consisting of a
fixed magnetic layer, tunnel layer and free magnetic layer
[150–153]. A resistance state of the STT-MRAM depends on
the magnetization direction (spin-up and spin-down) of the
free layer that is parallel or antiparallel to the fixed magnetic
layer. When the magnetization direction of the free layer is
antiparallel to the fixed magnetic layer, the MTJ is in an HRS.
On the other hand, it is in an LRS when the direction of the
free layer is parallel to the fixed magnetic layer. In addition,
the resistance state of STT-MRAM is changed by flowing the
current through the MTJ. When a positive current flows
through the MTJ with the antiparallel state, the magnetization
of the MTJ changes from antiparallel to parallel state due to
the STT effect. Similarly, the magnetization changes from
parallel to antiparallel state when a negative current flows
through it. In the case of the SOT-MRAM, the device consists
of a ferromagnet-heavy-metal heterostructure [154–158]. The
resistance state of the SOT-MRAM also depends on the
magnetization direction (spin-up and spin-down) of the
magnetic layer. The magnetization direction is changed by
SOT mechanism, which is generated by flowing the current
through a heavy metal. The boundary between the regions of
spin-up and spin-down means a domain wall in the magnetic
layer. The conductance of the SOT-MRAM changes with the
displacement of the domain wall. In addition, the magneti-
zation of the magnetic layer is larger than the STT-MRAM
due to SOT at the same current for changing the magnetiza-
tion direction [154]. Therefore, the SOT-MRAM has a lower
power consumption during the write operation than the STT-
MRAM. However, the SOT-MRAM has three or four term-
inals to allow current to flow through the heavy metal to
change the resistance state.

In terms of synaptic devices for the neuromorphic systems,
spin-based memories display a relatively good performance in
read and write operations with high speed (∼ns) and low
energy consumption (∼pJ) compared to conventional RRAM
and PCM [154, 155]. They also show excellent characteristics
in terms of endurance (>108) [152]. However, the low on/off
resistance ratio and the stochastic switching characteristics of
spin-based memory devices are disadvantageous. Thus, spin-
based memories have been mainly used as binary devices in
memory applications. Several memory cell structures and
materials have been studied, as shown in figure 21, to achieve a
multi-level state at spin-memory-based synapses. In addition,
spintronic neuromorphic systems have been researched to
obtain a learning accuracy similar to that of RRAM and PCM-
based neural network by using appropriate neural network
algorithms to complement the stochastic switching character-
istics of spin-based memories.

Many studies on STT-MRAM have highlighted the merits
of its application to synaptic devices, and there have been many
researches evaluating the feasibility of the neural network based
on STT-MRAM. Zhang et al proposed a compound spintronic
device consisting of multiple vertically stacked MTJs as a
synaptic device to implement multiple resistance states [150].
These MTJs were composed of CoFeB/MgO/CoFeB thin
films. The proposed compound spintronic device can achieve
designable and stable multiple resistance states by interfacial
and materials engineering from its components. Moreover, the
proposed compound spintronic device was used to mimic
neuron functionalities. All-spin artificial neural network was
presented with the synaptic devices and neuron circuits based
on the proposed compound spintronic device. The system-level
simulations on the MNIST data set for handwritten digital
recognition were performed and discussed with device varia-
tions. Lequeux et al suggested a spin-torque memristor as a
synaptic device using the domain wall propagating in a
magnetic track to implement multiple resistance states [151].
The magnetic stack consists of a synthetic anti-ferromagnet
(CoPt/Ru/CoPt/Ta/FeB), tunnel barrier (MgO), magnetic free
layer (FeB/Ta/FeB) and capping layer (MgO/Ta). The resis-
tive switching mechanism of the proposed device was dis-
cussed. The conductance change due to the displacement of the
magnetic domain wall by spin-torque was implemented for the
synaptic weight change in neural computation. Vincent et al
presented basic concepts relating to STT-MRAM behavior as
learning-capable synaptic devices [152]. Three programming
regimes (low, intermediate and high current) were identified and
compared. Then, a neural network-inspired system was simu-
lated to exploit the stochastic effect in performing unsupervised
learning. The results demonstrated that the switching prob-
abilities of the nano-devices did not need to be controlled
perfectly. Sharad et al presented the ANN design using spin
devices operated by pure spin-current injection for flipping a
nano-magnet [153]. In order to implement synaptic weight and
neuron functionalities, the conductance changes were investi-
gated with the displacement of the domain wall in the magnetic
layer. Then, CMOS-based inter-neuron communication was
employed to realize network-level functionality using physics-
based models of the spin devices.

Moreover, there have been many researches on evaluating
the feasibility of the neural network based on SOT-MRAM.
Sengupta et al proposed a ferromagnet-heavy-metal hetero-
structure based on SOT to implement the STDP. The proposed
synaptic device consists of four terminals to decouple spike
transmission and programming current paths. While the current
for learning flows mainly through the heavy metal and the dis-
placement of the magnetic domain wall changes, the spike
current modulated by the MTJ conductance changes with the
domain wall displacement. The performance and physical
characteristics of the synaptic devices were discussed to imple-
ment the STDP [154]. Then, the physical mechanism for gen-
erating synaptic plasticity was investigated to implement the
online programming of synapses based on the temporal infor-
mation of spikes transmitted by spiking neurons [155]. It was
also demonstrated that the magnetization dynamics of the MTJ
can similarly implement the short-term plasticity and long-term
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plasticity of biological synapses [156]. The theoretical demon-
stration of short-term plasticity and long-term plasticity
mechanisms in the MTJ was presented with the phenomenon of
stabilizing the free layer in an antiparallel state according to the
relative angle between the free layer and pinned layer. Finally,
the low-power intelligent neuromorphic system with adaptive
learning using short-term plasticity and long-term plasticity
mechanisms was investigated. Srinivasan et al proposed a sto-
chastic binary synapse composed of an MTJ and a heavy metal
[157]. Synaptic plasticity was investigated by the stochastic
switching of the MTJ conductance states, based on the temporal
correlation between the spiking activities of the interconnecting
neurons. The long-term and short-term stochastic synapses
comprised two unique binary synaptic elements, respectively.
The efficacy of the proposed synaptic configurations and sto-
chastic learning algorithm was demonstrated in a trained SNN to
classify handwritten digits in the MNIST data set. Borders et al
demonstrated associative memory operations reminiscent of the
brain using nonvolatile spintronics devices [158]. Anti-ferro-
magnet–ferromagnet bilayer-based Hall devices were used as the
synaptic device, which showed analog-like SOT switching
under zero magnetic fields. A neuromorphic system consisting
of an FPGA and 36 SOT-MRAMs was designed. An effect of
learning on the neuromorphic system using SOT-MRAMs was
successfully confirmed for several 3×3-block patterns.

3.5. FET-based

To implement an HNN using the STDP algorithm, it is
important to model the LTP and LTD functionalities as
electrical elements in accordance with the spike firing
sequence in actual biological synapses and neurons. The
effective design of a synaptic device that can combine storage
and computational capabilities is the core of the HNN

implementation. Many studies have attempted to reproduce
synaptic plasticity in electronic devices through a very large
integrated circuit based on CMOS. Several circuits have been
reported to simulate biological neurons. Recently, researches
on constructing a synapse array using a memristor crossbar
array have been actively conducted.

Synapses based on memristors have several advantages,
but there are some areas that need improvement. First,
memristor-based two-terminal synaptic devices can form a
high-density synaptic device array [85], but most devices
have a nonlinear conductance (G) response. Second, mem-
ristors are problematic in terms of device characteristic var-
iation and reliability when deployed in large-scale crossbar
arrays. The device characteristic variation of the memristor
leads to the decrease of the recognition rate in the pattern
recognition process of the HNN. One of the candidates for
solving these problems is a CMOS FET. Carver Mead, a
developer of the neuromorphic computing concept, proposed
the first FET-based synapse in 1996 [159]. Mead and col-
leagues demonstrated a learning system that uses 2×2
synaptic arrays.

Studies on FET-based synaptic devices have been pub-
lished and evolved into devices such as nanoparticle-organic
FETs [160] and MemFlash [161]. Several groups have pro-
posed FET-based synapse and neuron circuits using single or
multiple carbon nanotubes [162].

In addition, an approach using a thin-film transistor
(TFT)-type NOR flash memory cell with a half-covered
floating gate as a synaptic device has been proposed, as
shown in figure 22 [53]. The TFT-type NOR flash memory
devices and device arrays have been fabricated using con-
ventional CMOS fabrication processes. This structure allows
the program/erase operation to be performed by changing the
gate and source voltages so that the STDP characteristic of a

Figure 21. (a) Vertical structure schematic of an MTJ nanopillar composed of CoFeB/MgO/CoFeB thin films based on STT switching
mechanism. Here, FL, TB and PL are short for free layer, tunnel barrier and pinned layer, respectively. (b) Vertical structure schematic of
multiple vertically stacked MTJs to implement the multiple resistance states. © [2016] IEEE. Reprinted, with permission, from [150]. (c) 3D
schematic of a four-terminal synaptic device based on SOT switching, which enables a conductance change using domain wall movement in
a ferromagnetic layer. Reprinted from [154], with the permission of AIP Publishing.
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synapse can be implemented without any additional circuit
configuration. In addition, word-lines and bit-lines are con-
figured as the crossbar types and can be extended to large-
scale synapse arrays. System-level simulation to classify the
MNIST data set was successfully performed by adopting
unsupervised learning using STDP in TFT-type NOR flash
memory array. They used 28×28 MNIST handwritten digit
patterns for learning and recognition processes.

A reconfigurable GSD was proposed as a new high-
density and low-power synaptic device with near-linear
G-response for HW-DNNs [85], as shown in figure 23. The
proposed device is a GSD with a charge trap layer, which is
fabricated using the unit processes of conventional Si CMOS
technology. Since the Schottky junction between aluminum
(Al) and poly-Si is located on the bottom gate (BG) covered
with the SiO2/Si3N4/SiO2 stack, the effective Schottky bar-
rier height is controlled by the BG bias or the amount of
charge trapped in the Si3N4 layer. Note that the nitride layer
(Si3N4) can store charges. Because the Schottky barrier is
controlled under reverse bias, the reverse current is low
enough (reverse current less than 12 nA/μm) to be used as a
low-power synaptic device. The proposed device occupies a
small area (6F2), which is advantageous for implementing
large-scale synaptic arrays. The Schottky reverse current has
an exponential relationship with the effective Schottky barrier
height that is related to the amount of stored charge, and the
amount of stored charge is logarithmically proportional to the
number of potentiation pulses. Since there are exponential
and logarithmic relations canceling each other, a near-linear

conductance response to the number of potentiation pulses
can be obtained from the proposed device.

Another approach to mimic STM and LTM has been
reported using two separated gates based on a FinFET
structure [163]. One of the gates (G1) is used as a switching
node, while the other gate (G2) is used as a memory node.
Thanks to the electrically separated gates, the device can
directly interact with the BP signal of the postsynaptic neuron
circuit by G2 without any additional selection device and
control circuit. Furthermore, STM and LTM are implemented
and the transition between them depends on the interval
between input pulses as in a biological system. The advantage
of this scheme is that the synaptic transistors can directly
interact with both pre- and postsynaptic neuron circuits.

A neuromorphic classifier using an embedded NOR flash
memory array was proposed by Guo et al in 2017 [90]. They
designed a 28×28 binary-input, ten-output, three-layer
neuromorphic network using an embedded nonvolatile float-
ing-gate cell array redesigned from commercially available
180 nm NOR flash memory. The main result reported in this
paper is an experimental demonstration of a reproducible,
stable and robust neuromorphic network that can classify the
images of the standard MNIST dataset benchmark with high
reliability, high speed and high energy efficiency.

A novel insulator-to-metal transition (IMT) FET is pro-
posed for a synaptic device using an STDP algorithm by
Stoliar et al [164]. They fabricated FET-type synaptic devices
with SrTiO3 channels, as shown in figure 24. This SrTiO3

channel shows IMT characteristics due to the formation of a

Figure 22. (a) Bird’s eye view of a TFT-type NOR flash memory array and cross-sectional views cut in the (b) word-line direction.
(c) Process of changing the weights of the synapses corresponding to each neuron. (d) Classification behavior of neurons when random
digit patterns are applied after the multi-pattern learning process. © [2018] IEEE. Reprinted, with permission, from [53].
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polar region in the bulk SrTiO3. Furthermore, the power
consumption of the IMT-FET device is much smaller than
that of the resistive switching device.

Mulaosmanovic et al have reported a synaptic device
based on a ferroelectric FET (FeFET) realized in a 28 nm
high-k/metal gate technology [165]. Here, hafnium oxide is
used as a ferroelectric material and gradual nonvolatile fer-
roelectric switching is used to mimic multi-level synaptic
weights.

Another FeFET analog synaptic device has been pro-
posed to accelerate DNN training [166]. The authors experi-
mentally implemented an FeFET analog synaptic device
using partial polarization switching to accelerate on-chip
learning in DNN. The fabricated FeFET synaptic device
exhibits symmetric 5-bit potentiation and depression

characteristics. As a result, they showed an image recognition
accuracy of 90% after training on the MNIST data set.

4. Conclusion

In this paper, we have reviewed neuromorphic technology for
implementing ANNs. First, machine learning technology
based on the current von Neumann architecture developed
with the advancement of hardware accelerators has been
introduced and its limitation including the very low energy
efficiency have been investigated. To overcome these lim-
itations, neuromorphic technology has been proposed, and
discussed in two main directions. The first one is a neuro-
morphic technique using a bio-inspired learning algorithm

Figure 23. (a) Top SEM view. (b) Magnified cross-sectional TEM image at point A in (a). (c) Schematic cross-sectional view cut along the
solid line B-B’ in (a) and equivalent circuit diagram for p- and n-type GSDs. Dashed lines below the two Ss represent Schottky junctions, and
the solid line below O represents an ohmic-like junction. (d) IR−VBGS curves of p-/n-type GSD measured from two reconfigurable GSDs
(Devices 1 and 2). VBGO and VO are negative for the p-type GSD and positive for the n-type GSD. © [2017] IEEE. Reprinted, with
permission, from [85].
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and the other is a neuromorphic technique using a software-
based algorithm. We classified the types of neural networks
applying various learning algorithms and summarized their
characteristics, pros and cons. In detail, we analyzed the
detailed classification of each algorithm and examined the
characteristics of the synaptic devices required to implement
the HNN using the corresponding algorithm. We also sum-
marized the research progress using RRAM, CBRAM, PCM,
spin-based memory and FET-based memory, which are
representative emerging memory technologies used to
implement synaptic devices and arrays. Through the analysis
of developments in neuromorphic technology, which have
been attracting the attention of researchers in various fields,
we have presented a guideline that researchers should aim for.
It is important to consider how to meet the requirements of
memory devices for use as synaptic devices as well as how to
configure the entire system of neural networks. Since the
entire system of a neural network requires many additional
ICs, the learning/inference method for the operation of a
synaptic array must be carefully analyzed to match the
compatibility with the peripheral ICs. At present, the
application of neuromorphic research tends to be confined to
visual pattern recognition. It is necessary to expand it to
various application fields applicable to the real world such
as stochastic computing, recognition of human voice and
discrimination of atmospheric gas. If neuromorphic technol-
ogy, which can present a new computing paradigm, can
be successfully installed with various application possibilities,
it will be able to open up a new horizon in the mobile
artificial intelligence market by taking advantage of the low
power consumption and high integration capability of the
technology.

Acknowledgments

This work was partially supported by the MOTIE (Ministry of
Trade, Industry & Energy) (10080583), the KSRC (Korea
Semiconductor Research Consortium) support program for
the development of the future semiconductor device, the
KIST Institutional Program (Project No. 2E27810-18-P040),
the National Research Foundation of Korea (NRF-
2016M3A7B4909604) and the Brain Korea 21 Plus Project
in 2018.

ORCID iDs

Chul-Heung Kim https://orcid.org/0000-0002-4419-7269
Suhwan Lim https://orcid.org/0000-0003-3578-5488
Sung Yun Woo https://orcid.org/0000-0002-0857-3183
Won-Mook Kang https://orcid.org/0000-0003-1812-3407
Young-Tak Seo https://orcid.org/0000-0003-3970-4876
Sung-Tae Lee https://orcid.org/0000-0002-7298-4382
Soochang Lee https://orcid.org/0000-0002-7554-143X
Dongseok Kwon https://orcid.org/0000-0001-7676-8938
Seongbin Oh https://orcid.org/0000-0003-4470-0554
Yoohyun Noh https://orcid.org/0000-0003-4150-8524
Hyeongsu Kim https://orcid.org/0000-0002-4157-5340
Jangsaeng Kim https://orcid.org/0000-0003-4519-135X
Jong-Ho Bae https://orcid.org/0000-0002-1786-7132
Jong-Ho Lee https://orcid.org/0000-0003-3559-9802

References

[1] Hinton G E and Salakhutdinov R R 2006 Reducing the
dimensionality of data with neural networks Science 313 504–7

[2] Mikolov T, Karafiát M, Burget L, Cernocký J and
Khudanpur S 2010 Recurrent neural network based
language model Interspeech 2 045–8

[3] Srivastava N, Hinton G E, Krizhevsky A, Sutskever I and
Salakhutdinov R 2014 Dropout: a simple way to prevent
neural networks from overfitting J. Mach. Learn. Res. 15
1929–58

[4] Krizhevsky A, Sutskever I and Hinton G E 2012 ImageNet
classification with deep convolutional neural networks Proc.
Adv. Neural Information Processing Systems (NIPS)

[5] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,
Erhan D, Vanhoucke V and Rabinovich A 2015 Going
deeper with convolutions Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR) (https://
doi.org/10.1109/cvpr.2015.7298594)

[6] He K, Zhang X, Ren S and Sun J 2016 Deep residual learning
for image recognition Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR) (https://doi.org/
10.1109/cvpr.2016.90)

[7] Indiveri G and Liu S-C 2015 Memory and information
processing in neuromorphic systems Proc. IEEE 103 1379–97

[8] Poon C-S and Zhou K 2011 Neuromorphic silicon neurons
and large-scale neural networks: challenges and
opportunities Front. Neurosci. 22 108

[9] Masquelier T and Thorpe S J 2007 Unsupervised learning of
visual features through spike timing dependent plasticity
PLoS Comput. Biol. 3 247–57

[10] Burr G W et al 2015 Experimental demonstration and
tolerancing of a large-scale neural network (165000

Figure 24. Cross-section (top) and SEM image (bottom) of our IMT-
FET-based artificial synapse. © [2017] IEEE. Reprinted, with
permission, from [164].

28

Nanotechnology 30 (2019) 032001 Topical Review

https://orcid.org/0000-0002-4419-7269
https://orcid.org/0000-0002-4419-7269
https://orcid.org/0000-0002-4419-7269
https://orcid.org/0000-0002-4419-7269
https://orcid.org/0000-0003-3578-5488
https://orcid.org/0000-0003-3578-5488
https://orcid.org/0000-0003-3578-5488
https://orcid.org/0000-0003-3578-5488
https://orcid.org/0000-0002-0857-3183
https://orcid.org/0000-0002-0857-3183
https://orcid.org/0000-0002-0857-3183
https://orcid.org/0000-0002-0857-3183
https://orcid.org/0000-0003-1812-3407
https://orcid.org/0000-0003-1812-3407
https://orcid.org/0000-0003-1812-3407
https://orcid.org/0000-0003-1812-3407
https://orcid.org/0000-0003-3970-4876
https://orcid.org/0000-0003-3970-4876
https://orcid.org/0000-0003-3970-4876
https://orcid.org/0000-0003-3970-4876
https://orcid.org/0000-0002-7298-4382
https://orcid.org/0000-0002-7298-4382
https://orcid.org/0000-0002-7298-4382
https://orcid.org/0000-0002-7298-4382
https://orcid.org/0000-0002-7554-143X
https://orcid.org/0000-0002-7554-143X
https://orcid.org/0000-0002-7554-143X
https://orcid.org/0000-0002-7554-143X
https://orcid.org/0000-0001-7676-8938
https://orcid.org/0000-0001-7676-8938
https://orcid.org/0000-0001-7676-8938
https://orcid.org/0000-0001-7676-8938
https://orcid.org/0000-0003-4470-0554
https://orcid.org/0000-0003-4470-0554
https://orcid.org/0000-0003-4470-0554
https://orcid.org/0000-0003-4470-0554
https://orcid.org/0000-0003-4150-8524
https://orcid.org/0000-0003-4150-8524
https://orcid.org/0000-0003-4150-8524
https://orcid.org/0000-0003-4150-8524
https://orcid.org/0000-0002-4157-5340
https://orcid.org/0000-0002-4157-5340
https://orcid.org/0000-0002-4157-5340
https://orcid.org/0000-0002-4157-5340
https://orcid.org/0000-0003-4519-135X
https://orcid.org/0000-0003-4519-135X
https://orcid.org/0000-0003-4519-135X
https://orcid.org/0000-0003-4519-135X
https://orcid.org/0000-0002-1786-7132
https://orcid.org/0000-0002-1786-7132
https://orcid.org/0000-0002-1786-7132
https://orcid.org/0000-0002-1786-7132
https://orcid.org/0000-0003-3559-9802
https://orcid.org/0000-0003-3559-9802
https://orcid.org/0000-0003-3559-9802
https://orcid.org/0000-0003-3559-9802
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/JPROC.2015.2444094
https://doi.org/10.1109/JPROC.2015.2444094
https://doi.org/10.1109/JPROC.2015.2444094
https://doi.org/10.3389/fnins.2011.00108
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1371/journal.pcbi.0030031


synapses) using phase-change memory as the synaptic
weight element IEEE Trans. Electron Devices 62 3498–507

[11] Merolla P A et al 2014 A million spiking-neuron integrated
circuit with a scalable communication network and interface
Science 345 668–73

[12] Milo V, Pedretti G, Carboni R, Calderoni A, Ramaswamy N,
Ambrogio S and Ielmini D 2016 Demonstration of hybrid
CMOS/RRAM neural networks with spike time/rate-
dependent plasticity IEEE Int. Electron Devices Meeting
(IEDM) (https://doi.org/10.1109/iedm.2016.7838435)

[13] LeCun Y, Bottou L, Bengio Y and Haffner P 1998 Gradient-
based learning applied to document recognition Proc. IEEE
86 2278–324

[14] Jouppi N P et al 2017 In-datacenter performance of a tensor
processing unit 44th Annual Int. Symp. on Computer
Architecture (ISCA) (https://doi.org/10.1145/
3079856.3080246)

[15] Chen Y-H, Krishna T, Emer J S and Sze V 2017 Eyeriss: An
energy-efficient reconfigurable accelerator for deep
convolutional neural networks IEEE J. Solid-State Circuits
52 127–38

[16] Shafiee A, Nag A, Muralimanohar N, Balasubramonian R,
Strachan J P, Hu M, Williams R S and Srikumar V 2016
ISAAC: a convolutional neural network accelerator with in-
situ analog arithmetic in crossbars 43rd Annual Int. Symp.
on Computer Architecture (ISCA) (https://doi.org/
10.1109/ISCA.2016.12)

[17] Chen Y et al 2014 DaDianNao: a machine-learning
supercomputer 43rd Annual Int. Symp. on Microarchitecture
(MICRO)

[18] Chi P, Li S, Xu C, Zhang T, Zhao J, Liu Y, Wang Y and Xie Y
2016 PRIME: a novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory
43rd Annual Int. Symp. on Computer Architecture (ISCA)
(https://doi.org/10.1109/ISCA.2016.13)

[19] Cattani C and Pierro G 2013 On the fractal geometry of DNA
by the binary image analysis Bull. Math. Biol. 75 1544–70

[20] Diehl P U and Cook M 2015 Unsupervised learning of digit
recognition using spike-timing-dependent plasticity Front.
Comput. Neurosci. 9 99

[21] Ĉadík M 2008 Perceptual evaluation of color-to-grayscale
image conversions Comput. Graph. Forum 1745–54

[22] Ambrad M, Guo B, Martinez D and Bermak A 2008 A
spiking neural network for gas discrimination using a tin
oxide sensor array IEEE Int. Symp. Elec. Des. Test. Appl.
(https://doi.org/10.1109/delta.2008.116)

[23] Wu S, Amari S I and Nakahara H 2002 Population coding and
decoding in a neural field: a computational study Neural
Comput. 14 999–1026

[24] Vinje W E and Gallant J L 2000 Sparse coding and
decorrelation in primary visual cortex during natural vision
Science 287 1273–6

[25] Adrian E D 1926 The impulses produced by sensory nerve
endings J. Physiol. 61 49–72

[26] Bienenstock E L, Cooper L N and Munro P W 1982 Theory
for the development of neuron selectivity: orientation
specificity and binocular interaction in visual cortex
J. Neurosci. 2 32–48

[27] Indiveri G, Chicca E and Douglas R 2006 A VLSI array of
low-power spiking neurons and bistable synapses with
spike-timing dependent plasticity IEEE Trans. Neural Netw.
17 211–21

[28] O’Connor P, Neil D, Liu S C, Delbruck T and Pfeiffer M
2013 Real-time classification and sensor fusion with a
spiking deep belief network Front. Neurosci. 7 178

[29] Diehl P U, Neil D, Binas J, Cook M, Liu S C and Pfeiffer M
2015 Fast-classifying, high-accuracy spiking deep networks
through weight and threshold balancing Int. Joint Conf. on

Neural Networks (IJCNN) (https://doi.org/10.1109/
ijcnn.2015.7280696)

[30] Querlioz D, Bichler O, Dollfus P and Gamrat C 2013
Immunity to device variations in a spiking neural network
with memristive nanodevices IEEE Trans. Nanotechnol. 12
288–95

[31] Wang Z et al 2017 Memristors with diffusive dynamics as
synaptic emulators for neuromorphic computing Nat. Mater.
16 101

[32] Stein R B, Gossen E R and Jones K E 2005 Neuronal
variability: noise or part of the signal? Nat. Rev. Neurosci. 6
389–97

[33] Theunissen F and Miller J P 1995 Temporal encoding in
nervous systems: a rigorous definition J. Comput. Neurosci.
2 149–62

[34] Kaneko Y, Nishitani Y and Ueda M 2014 Ferroelectric
artificial synapses for recognition of a multishaded image
IEEE Trans. Electron Devices 61 2827–8

[35] Sheik S, Pfeiffer M, Stefanini F and Indiveri G 2013 Spatio-
temporal spike pattern classification in neuromorphic
systems Conf. Biomim. Biohybrid. Sys. pp 262–73

[36] Querlioz D, Bichler O and Gamrat C 2011 Simulation of a
memristor-based spiking neural network immune to device
variations Int. Joint Conf. on Neural Networks (IJCNN)
(https://doi.org/10.1109/ijcnn.2011.6033439)

[37] Kim H, Hwang S, Park J and Park B G 2017 Silicon synaptic
transistor for hardware-based spiking neural network and
neuromorphic system Nanotechnology 28 405202

[38] Zeng Y, Devincentis K, Xiao Y, Ferdous Z I, Guo X,
Yan Z and Berdichevsky Y 2018 A supervised STDP-based
training algorithm for living neural networks 2018 IEEE Int.
Conf. on Acoustics, Speech and Signal Processing (ICASSP)
(Calgary, AB) pp 1154–8

[39] Querlioz D, Zhao W S, Dolfus P, Klein J O, Bichler O and
Gamrat C 2012 Bioinspired networks with nanoscale
memristive devices that combine the unsupervised and
supervised learning approaches IEEE/ACM Int. Sym. on
Nanoscale Architectures (NANOARCH) (https://doi.org/
10.1145/2765491.2765528)

[40] Zamarreno-Ramos C, Camunas-Mesa L A,
Perez-Carrasco J A, Masquelier T,
Serrano-Gotarredona T and Linares-Barranco B 2011 On
spike-timing-dependent plasticity, memristive devices, and
building a self-learning visual cortex Front. Neurosci. 5 26

[41] Bi G and Poo M 1998 Synaptic modifications in cultured
hippocampal neurons: dependence on spike timing, synaptic
strength, and postsynaptic cell type J. Neurosci. 18 10464–72

[42] Almasi A D, Wozniak S, Cristea V, Leblebici Y and
Engbersen T 2016 Review of advances in neural networks:
Neural design technology stack Neurocomputing 174 31–41

[43] Ambrogio S, Ciocchini N, Laudato M, Milo V, Pirovano A,
Fantini P and Ielmini D 2016 Unsupervised learning by
spike timing dependent plasticity in phase change memory
(PCM) synapses Front. Neurosci. 10 56

[44] Pedretti G, Bianchi S, Milo V, Calderoni A,
Ramaswamy N and Ielmini D 2017 Modeling-based design
of brain-inspired spiking neural networks with RRAM
learning synapses IEEE Int. Electron Devices Meeting
(IEDM) (https://doi.org/10.1109/iedm.2017.8268467)

[45] Bichler O, Suri M, Querlioz D, Vuillaume D, DeSalvo B and
Gamrat C 2012 Visual pattern extraction using energy-
efficient ‘2-PCM synapse’ neuromorphic architecture IEEE
Trans. Electron Devices 59 2206–14

[46] Sidler S, Pantazi A, Wozniak S, Leblebici Y and
Eleftheriou E 2017 Unsupervised learning using phase-
change synapses and complementary patterns Int. Conf. on
Artificial Neural Networks (ICANN) (https://doi.org/
10.1007/978-3-319-68600-4_33)

29

Nanotechnology 30 (2019) 032001 Topical Review

https://doi.org/10.1109/TED.2015.2439635
https://doi.org/10.1109/TED.2015.2439635
https://doi.org/10.1109/TED.2015.2439635
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/iedm.2016.7838435
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1007/s11538-013-9859-9
https://doi.org/10.1007/s11538-013-9859-9
https://doi.org/10.1007/s11538-013-9859-9
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1111/j.1467-8659.2008.01319.x
https://doi.org/10.1111/j.1467-8659.2008.01319.x
https://doi.org/10.1111/j.1467-8659.2008.01319.x
https://doi.org/10.1109/delta.2008.116
https://doi.org/10.1162/089976602753633367
https://doi.org/10.1162/089976602753633367
https://doi.org/10.1162/089976602753633367
https://doi.org/10.1126/science.287.5456.1273
https://doi.org/10.1126/science.287.5456.1273
https://doi.org/10.1126/science.287.5456.1273
https://doi.org/10.1113/jphysiol.1926.sp002273
https://doi.org/10.1113/jphysiol.1926.sp002273
https://doi.org/10.1113/jphysiol.1926.sp002273
https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982
https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982
https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982
https://doi.org/10.1109/TNN.2005.860850
https://doi.org/10.1109/TNN.2005.860850
https://doi.org/10.1109/TNN.2005.860850
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.1109/ijcnn.2015.7280696
https://doi.org/10.1109/ijcnn.2015.7280696
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.1038/nmat4756
https://doi.org/10.1038/nrn1668
https://doi.org/10.1038/nrn1668
https://doi.org/10.1038/nrn1668
https://doi.org/10.1038/nrn1668
https://doi.org/10.1007/BF00961885
https://doi.org/10.1007/BF00961885
https://doi.org/10.1007/BF00961885
https://doi.org/10.1109/TED.2014.2331707
https://doi.org/10.1109/TED.2014.2331707
https://doi.org/10.1109/TED.2014.2331707
https://doi.org/10.1007/978-3-642-39802-5_23
https://doi.org/10.1007/978-3-642-39802-5_23
https://doi.org/10.1007/978-3-642-39802-5_23
https://doi.org/10.1109/ijcnn.2011.6033439
https://doi.org/10.1088/1361-6528/aa86f8
https://doi.org/10.1109/icassp.2018.8462502
https://doi.org/10.1109/icassp.2018.8462502
https://doi.org/10.1109/icassp.2018.8462502
https://doi.org/10.1145/2765491.2765528
https://doi.org/10.1145/2765491.2765528
https://doi.org/10.3389/fnins.2011.00026
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1016/j.neucom.2015.02.092
https://doi.org/10.1016/j.neucom.2015.02.092
https://doi.org/10.1016/j.neucom.2015.02.092
https://doi.org/10.3389/fnins.2016.00056
https://doi.org/10.1109/iedm.2017.8268467
https://doi.org/10.1109/TED.2012.2197951
https://doi.org/10.1109/TED.2012.2197951
https://doi.org/10.1109/TED.2012.2197951
https://doi.org/10.1007/978-3-319-68600-4_33
https://doi.org/10.1007/978-3-319-68600-4_33


[47] Yu S, Wu Y, Jeyasingh R, Kuzum D and Wong H S P 2011
An electronic synapse device based on metal oxide resistive
switching memory for neuromorphic computation IEEE
Trans. Electron Devices 58 2729–37

[48] Adam G C, Hoskins B D, Prezioso M, Merrikh-Bayat F,
Chakrabarti B and Strukov D B 2017 3D memristor
crossbars for analog and neuromorphic computing
applications IEEE Trans. Electron Devices 64 312–8

[49] Chen P-Y, Lin B, Wang I-T, Hou T-H, Ye J, Vrudhula S,
Seo J-S, Cao Y and Yu S 2015 Mitigating effects of non-ideal
synaptic device characteristics for on-chip learning IEEE/ACM
Int. Conf. on Computer-Aided Design (ICCAD) pp 194–9

[50] Yu S 2018 Neuro-inspired computing with emerging
nonvolatile memory Proc. IEEE 106 260–85

[51] Kim S, Lim M, Kim Y, Kim H-D and Choi S-J 2018 Impact
of synaptic device variations on pattern recognition accuracy
in a hardware neural network Sci. Rep. 8 2638

[52] Yu S, Gao B, Fang Z, Yu H, Kang J and Wong H S P 2013 A
low energy oxide-based electronic synaptic device for
neuromorphic visual systems with tolerance to device
variation Adv. Mater. 25 1774–9

[53] Kim C-H, Lee S, Woo S Y, Kang W-M, Lim S, Bae J-H,
Kim J and Lee J-H 2018 Demonstration of unsupervised
learning with spike-timing-dependent plasticity using a TFT-
type NOR flash memory array IEEE Trans. Electron
Devices 65 1774–80

[54] Choi H-S, Wee D-H, Kim H, Kim S, Ryoo K-C, Park B-G and
Kim Y 2018 3D floating-gate synapse array with spike-time-
dependent plasticity IEEE Trans. Electron Devices 65 101–7

[55] Hinton G E 1986 Learning distributed representations of
concepts Proc. of the 8th Annual Conf. of the Cognitive
Science Society

[56] Hsu S K, Agarwal A, Anders M A, Mathew S K, Kaul H,
Sheikh F and Krishnamurthy R K 2013 A 280 mV-to-1.1 V
256b reconfigurable SIMD vector permutation engine with
2-dimensional shuffle in 22 nm tri-gate CMOS IEEE J.
Solid-State Circuits 48 118–27

[57] Burr G W, Shelby R M, di Nolfo C, Jang J W, Shenoy R S,
Narayanan P, Virwani K, Giacometti E U, Kurdi B and
Hwang H 2014 Experimental demonstration and tolerancing
of a large-scale neural network (165 000 synapses), using
phase-change memory as the synaptic weight element IEEE
Int. Electron Devices Meeting (IEDM) (https://doi.org/
10.1109/iedm.2014.7047135)

[58] Liu B, Li H, Chen Y, Li X, Wu Q and Huang T 2015 Vortex:
variation-aware training for memristor x-bar ACM/EDAC/
IEEE Design Automation Conf. (DAC) (https://doi.org/
10.1145/2744769.2744930)

[59] Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C,
Likharev K K and Strukov D B 2015 Training and operation
of an integrated neuromorphic network based on metal-
oxide memristors Nature 521 61–4

[60] Hu M, Li H, Chen Y, Wu Q, Rose G S and Linderman R W
2014 Memristor crossbar-based neuromorphic computing
system: a case study IEEE Trans. Neural Netw. Learn. Syst.
25 1864–78

[61] Salakhutdinov R and Hinton G E 2007 Learning a nonlinear
embedding by preserving class neighbourhood structure
Proc. Int. Conf. on Artificial Intelligence and Statistics
(AISTATS)

[62] Chen Y Y, Goux L, Clima S, Govoreanu B, Degraeve R,
Sankar K G, Fantini A, Groeseneken G, Wouters D J and
Jurczak M 2013 Endurance/retention trade-off on cap 1T1R
bipolar RRAM IEEE Trans. Electron Devices 60 1114–21

[63] Merrikh-Bayat F, Guo X, Klachko M, Prezioso M,
Likharev K K and Strukov D B 2017 High-performance
mixed-signal neurocomputing with nanoscale floating-gate
memory cell arrays IEEE Trans. Neural Netw. Learn. Syst.
pp 1–9

[64] Merrikh-Bayat F, Guo X, Om’mani H A, Do N,
Likharev K K and Strukov D B 2015 Redesigning
commercial floating-gate memory for analog computing
applications IEEE Int. Symp. on Circuits and Systems
(ISCAS) (https://doi.org/10.1109/ISCAS.2015.7169048)

[65] Merrikh-Bayat F, Guo X, Klachko M, Do N, Likharev K and
Strukov D B 2016 Model-based high-precision tuning of
NOR flash memory cells for analog computing applications
Annual Device Research Conf. (DRC) (https://doi.org/
10.1109/drc.2016.7548449)

[66] Guo X, Merrikh-Bayat F, Prezioso M, Chen Y, Nguyen B,
Do N and Strukov D B 2017 Temperature-insensitive analog
vector-by-matrix multiplier based on 55 nm NOR flash
memory cells IEEE Custom Integrated Circuits Conf.
(CICC) (https://doi.org/10.1109/cicc.2017.7993628)

[67] Hasler J and Marr H Y 2013 Finding a roadmap to achieve
large neuromorphic hardware systems Front. Neurosci.
7 118

[68] Schlottmann C R and Hasler P E 2011 A highly dense, low
power, programmable analog vector-matrix multiplier: the
FPAA implementation IEEE Trans. Emerg. Sel. Topics
Circuits Syst. 1 403–11

[69] Yu S, Li Z, Chen P-Y, Wu H, Gao B, Wang D, Wu W and
Qian H 2016 Binary neural network with 16 Mb RRAM
macro chip for classification and online training IEEE Int.
Electron Devices Meeting (IEDM) (https://doi.org/
10.1109/iedm.2016.7838429)

[70] Hu M et al 2018 Memristor-based analog computation and
neural network classification with a dot product engine Adv.
Mater. 30 1705914

[71] Gao L, Chen P-Y and Yu S 2016 Demonstration of
convolution kernel operation on resistive cross-point array
IEEE Elecron Device Lett. 37 870–3

[72] Lim S, Bae J-H, Eum J-H, Lee S, Kim C-H, Kwon D,
Park B-G and Lee J-H 2018 Adaptive learning rule for
hardware-based deep neural networks using electronic
synapse devices Neural Comput. Applic. 1–16

[73] Chang C-C et al 2017 Challenges and opportunities toward
online training acceleration using RRAM-based hardware
neural network IEEE Int. Electron Devices Meeting (IEDM)
(https://doi.org/10.1109/iedm.2017.8268373)

[74] Binas J, Neil D, Indiveri G, Liu S-C and Pfeiffer M 2016
Precise deep neural network computation on imprecise low-
power analog hardware arXiv:1606.07786

[75] Narayanan P, Sanches L L, Fumarola A, Shelby R M,
Ambrogio S, Jang J, Hwang H, Leblebici Y and Bur G W
2017 Reducing circuit design complexity for neuromorphic
machine learning systems based on non-volatile memory
arrays IEEE Int. Symp. on Circuits and Systems (ISCAS)
(https://doi.org/10.1109/iscas.2017.8050988)

[76] Burr G W, Narayanan P, Shelby R M, Sidler S, Boybat I,
di Nolfo C and Leblebici Y 2015 Large-scale neural networks
implemented with non-volatile memory as the synaptic
weight element: Comparative performance analysis (accuracy,
speed, and power) IEEE Int. Electron Devices Meeting
(IEDM) (https://doi.org/10.1109/iedm.2015.7409625)

[77] Fumarola A, Narayanan P, Sanches L L, Sidler S, Jang J,
moon K, Shelby R M, Hwang H and Bur G W 2016
Accelerating machine learning with non-volatile memory:
exploring device and circuit tradeoffs IEEE Int. Conf. on
Rebooting Computing (ICRC) (https://doi.org/10.1109/
icrc.2016.7738684)

[78] Ambrogio S et al 2018 Equivalent-accuracy accelerated
neural-network training using analogue memory Nature 558
60–7

[79] Schiffmann W, Joost M and Werner R 1994 Optimization of
the backpropagation algorithm for training multilayer
perceptrons Technical Report University of Koblenz,
Institute of Physics, Rheinau

30

Nanotechnology 30 (2019) 032001 Topical Review

https://doi.org/10.1109/TED.2011.2147791
https://doi.org/10.1109/TED.2011.2147791
https://doi.org/10.1109/TED.2011.2147791
https://doi.org/10.1109/TED.2016.2630925
https://doi.org/10.1109/TED.2016.2630925
https://doi.org/10.1109/TED.2016.2630925
https://doi.org/10.1109/iccad.2015.7372570
https://doi.org/10.1109/iccad.2015.7372570
https://doi.org/10.1109/iccad.2015.7372570
https://doi.org/10.1109/JPROC.2018.2790840
https://doi.org/10.1109/JPROC.2018.2790840
https://doi.org/10.1109/JPROC.2018.2790840
https://doi.org/10.1038/s41598-018-21057-x
https://doi.org/10.1002/adma.201203680
https://doi.org/10.1002/adma.201203680
https://doi.org/10.1002/adma.201203680
https://doi.org/10.1109/TED.2018.2817266
https://doi.org/10.1109/TED.2018.2817266
https://doi.org/10.1109/TED.2018.2817266
https://doi.org/10.1109/TED.2017.2775233
https://doi.org/10.1109/TED.2017.2775233
https://doi.org/10.1109/TED.2017.2775233
https://doi.org/10.1109/JSSC.2012.2222811
https://doi.org/10.1109/JSSC.2012.2222811
https://doi.org/10.1109/JSSC.2012.2222811
https://doi.org/10.1109/iedm.2014.7047135
https://doi.org/10.1109/iedm.2014.7047135
https://doi.org/10.1145/2744769.2744930
https://doi.org/10.1145/2744769.2744930
https://doi.org/10.1038/nature14441
https://doi.org/10.1038/nature14441
https://doi.org/10.1038/nature14441
https://doi.org/10.1109/TNNLS.2013.2296777
https://doi.org/10.1109/TNNLS.2013.2296777
https://doi.org/10.1109/TNNLS.2013.2296777
https://doi.org/10.1109/TED.2013.2241064
https://doi.org/10.1109/TED.2013.2241064
https://doi.org/10.1109/TED.2013.2241064
https://doi.org/10.1109/TNNLS.2017.2778940
https://doi.org/10.1109/TNNLS.2017.2778940
https://doi.org/10.1109/TNNLS.2017.2778940
https://doi.org/10.1109/ISCAS.2015.7169048
https://doi.org/10.1109/drc.2016.7548449
https://doi.org/10.1109/drc.2016.7548449
https://doi.org/10.1109/cicc.2017.7993628
https://doi.org/10.3389/fnins.2013.00118
https://doi.org/10.1109/JETCAS.2011.2165755
https://doi.org/10.1109/JETCAS.2011.2165755
https://doi.org/10.1109/JETCAS.2011.2165755
https://doi.org/10.1109/iedm.2016.7838429
https://doi.org/10.1109/iedm.2016.7838429
https://doi.org/10.1002/adma.201705914
https://doi.org/10.1109/LED.2016.2573140
https://doi.org/10.1109/LED.2016.2573140
https://doi.org/10.1109/LED.2016.2573140
https://doi.org/10.1007/s00521-018-3659-y
https://doi.org/10.1007/s00521-018-3659-y
https://doi.org/10.1007/s00521-018-3659-y
https://doi.org/10.1109/iedm.2017.8268373
http://arxiv.org/abs/http://1606.07786
https://doi.org/10.1109/iscas.2017.8050988
https://doi.org/10.1109/iedm.2015.7409625
https://doi.org/10.1109/icrc.2016.7738684
https://doi.org/10.1109/icrc.2016.7738684
https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.1038/s41586-018-0180-5


[80] Nair M V and Dudek P 2015 Gradient-descent-based learning
in memristive crossbar arrays Int. Joint Conf. on Neural
Networks (IJCNN) (https://doi.org/10.1109/
ijcnn.2015.7280658)

[81] Yao P et al 2017 Face classification using electronic synapses
Nat. Commun. 8 1–8

[82] Belhumeur P N, Hespanha J P and Kriegman D J 1997
Eigenfaces vs. fisherfaces: recognition using class specific linear
projection IEEE Trans. Pattern Anal. Mach. Intell. 19 711–20

[83] Wang Y-F, Lin Y-C, Wang I-T, Lin T-P and Hou T-H 2015
Characterization and modeling of
nonfilamentaryTa/TaOx/TiO2/Ti analog synaptic device
Sci. Rep. 5 10150

[84] Burr G W et al 2017 Neuromorphic computing using non-
volatile memory Adv. Phys. X 2 89–124

[85] Bae J-H, Lim S, Park B-G and Lee J-H 2017 High-density
and near-linear synaptic device based on a reconfigurable
gated Schottky diode IEEE Electron Device Lett. 38 1153–6

[86] Lim S, Bae J-H, Eum J-H, Lee S, Kim C-H, Kwon D and
Lee J-H 2018 Hardware-based neural networks using a gated
Schottky diode as a synapse device IEEE Int. Symp. on
Circuits and Systems (ISCAS) (https://doi.org/10.1109/
iscas.2018.8351152)

[87] Chang C-C, Chen P-C, Chou T, Wang I-T, Hudec B,
Chang C-C, Tsai C-M, Chang T-S and Hou T-H 2018
Mitigating asymmetric nonlinear weight update effects in
hardware neural network based on analog resistive synapse
IEEE J. Emerg. Sel. Topics Circuits Syst. 8 116–24

[88] moon K, Kwak M, Park J, Lee D and Hwang H 2017
Improved conductance linearity and conductance ratio of
1T2R synapse device for neuromorphic systems IEEE
Electron Device Lett. 38 1023–6

[89] Jang J-W, Park S, Jeng Y-H and Hwang H 2014 ReRAM-
based synaptic device for neuromorphic computing IEEE
Int. Symp. on Circuits and Systems (ISCAS) (https://doi.
org/10.1109/iscas.2014.6865320)

[90] Guo X, Merrikh-Bayat F, Bavandpour M, Klachko M,
Mahmoodi M R, Prezioso M, Likharev K K and
Strukov D B 2017 Fast, energy-efficient, robust, and
reproducible mixed-signal neuromorphic classifier based on
embedded NOR flash memory technology IEEE Int.
Electron Devices Meeting (IEDM) (https://doi.org/
10.1109/iedm.2017.8268341)

[91] Alibert F, Gao L, Hoskins B D and Strukov D B 2012 High
precision tuning of state for memristive devices by adaptable
variation-tolerant algorithm Nanotechnology 23 075201

[92] Wu H et al 2017 Device and circuit optimization of RRAM
for neuromorphic computing IEEE Int. Electron Devices
Meeting (IEDM) (https://doi.org/10.1109/
iedm.2017.8268372)

[93] Nandakumar S R, Gallo M L, Boybat I, Rajendran B,
Sebastian A and Eleftheriou E 2018 Mixed-precision
architecture based on computational memory for training
deep neural networks IEEE Int. Symp. on Circuits and
Systems (ISCAS) (https://doi.org/10.1109/
iscas.2018.8351656)

[94] Boybat I, Gallo M L, Moraitis T, Leblebici Y,
Sebastian A and Eleftheriou E 2017 Stochastic weight
updates in phase-change memory-based synapses and their
influence on artificial neural networks IEEE 13th Conf. on
PhD Research in Microelectronics and Electronics (PRIME)
(https://doi.org/10.1109/prime.2017.7974095)

[95] Cao Y, Chen Y and Khosla D 2015 Spiking deep
convolutional neural networks for energy-efficient object
recognition Int. J. Comput. Vis. 113 54–66

[96] Rueckauer B, Lungu I-A, Hu Y, Pfeiffer M and Liu S-C 2017
Conversion of continuous-valued deep networks to efficient
event-driven networks for image classification Front.
Neurosci. 11 682

[97] Mostafa H 2016 Supervised learning based on temporal
coding in spiking neural networks IEEE Trans. on Neural
Networks and Learning Systems vol 29, pp 3227–35

[98] Hunsberger E and Eliasmith C 2015 Spiking deep networks
with LIF neurons arXiv:1510.08829

[99] Lee J H, Delbruck T and Pfeiffer M 2016 Training deep
spiking neural networks using backpropagation Front.
Neurosci. 10 508

[100] Neftci E O, Augustine C, Paul S and Detorakis G 2017 Event-
driven random backpropagation: enabling neuromorphic
deep learning machines Front. Neurosci. 11 324

[101] Nøkland A 2016 Direct feedback alignment provides learning
in deep neural networks Proc. Adv. Neural Information
Processing Systems (NIPS)

[102] Baldi P, Sadowski P and Lu Z 2017 Learning in the machine:
the symmetries of the deep learning channel Neural Netw.
95 110–4

[103] Lillicrap T P, Cownden D, Tweed D B and Akerman C J
2016 Random synaptic feedback weights support error
backpropagation for deep learning Nat. Commun. 7
13276

[104] Scellier B and Bengio Y 2017 Equilibrium propagation:
bridging the gap between energy-based models and
backpropagation Front. Comput. Neurosci. 11 24

[105] Chua L O 2011 Resistance switching memories are
memristors Appl. Phys. A 102 765–83

[106] Wong H, Lee H, Yu S, Chen Y, Wu Y, Chen P, Lee B,
Chen F and Tsai M 2012 Metal–oxide RRAM Proc. IEEE
100 1951–70

[107] Yang J, Miao F, Pickett M, Ohlberg D, Stewart D, Lau C and
Williams R 2009 The mechanism of electroforming of metal
oxide memristive switches Nanotechnology 20 215201

[108] Seo K et al 2011 Analog memory and spike-timing-dependent
plasticity characteristics of a nanoscale titanium oxide
bilayer resistive switching device Nanotechnology 22
254023

[109] Chang T, Jo S and Lu W 2011 Short-term memory to long-
term memory transition in a nanoscale memristor ACS Nano
5 7669–76

[110] Yu S, Gao B, Fang Z, Yu H, Kang J and Wong H S P 2012 A
neuromorphic visual system using RRAM synaptic devices
with sub-pj energy and tolerance to variability: experimental
characterization and large-scale modeling IEEE Int. Electron
Devices Meeting (IEDM) (https://doi.org/10.1109/
iedm.2012.6479018)

[111] Woo J, moon K, Song J, Lee S, Kwak M, Park J and
Hwang H 2016 Improved synaptic behavior under
identical pulses using AlOx/HfO2 bilayer RRAM array
for neuromorphic systems IEEE Electron Device Lett. 37
994–7

[112] Park J, Kwak M, moon K, Woo J, Lee D and Hwang H 2016
TiOx-based RRAM synapse with 64-levels of conductance
and symmetric conductance change by adopting a hybrid
pulse scheme for neuromorphic computing IEEE Electron
Device Lett. 37 1559–62

[113] Sarkar B, Lee B and Misra V 2015 Understanding the gradual
reset in Pt/Al2O3/Ni RRAM for synaptic applications
Semicond. Sci. Technol. 30 105014

[114] Zhao M et al 2017 Investigation of statistical retention of
filamentary analog RRAM for neuromorphic computing
IEEE Int. Electron Devices Meeting (IEDM) (https://doi.
org/10.1109/iedm.2017.8268522)

[115] Tosson A, Yu S, Anis M and Wei L 2017 IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 25 3125–37

[116] Ambrogio S, Balatti S, Milo V, Carboni R, Wang Z,
Calderoni A, Ramaswamy N and Ielmini D 2016
Neuromorphic learning and recognition with one-transistor-
one-resistor synapses and bistable metal oxide RRAM IEEE
Trans. Electron Devices 63 1508–15

31

Nanotechnology 30 (2019) 032001 Topical Review

https://doi.org/10.1109/ijcnn.2015.7280658
https://doi.org/10.1109/ijcnn.2015.7280658
https://doi.org/10.1038/ncomms15199
https://doi.org/10.1038/ncomms15199
https://doi.org/10.1038/ncomms15199
https://doi.org/10.1109/34.598228
https://doi.org/10.1109/34.598228
https://doi.org/10.1109/34.598228
https://doi.org/10.1038/srep10150
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1109/LED.2017.2713460
https://doi.org/10.1109/LED.2017.2713460
https://doi.org/10.1109/LED.2017.2713460
https://doi.org/10.1109/iscas.2018.8351152
https://doi.org/10.1109/iscas.2018.8351152
https://doi.org/10.1109/JETCAS.2017.2771529
https://doi.org/10.1109/JETCAS.2017.2771529
https://doi.org/10.1109/JETCAS.2017.2771529
https://doi.org/10.1109/LED.2017.2721638
https://doi.org/10.1109/LED.2017.2721638
https://doi.org/10.1109/LED.2017.2721638
https://doi.org/10.1109/iscas.2014.6865320
https://doi.org/10.1109/iscas.2014.6865320
https://doi.org/10.1109/iedm.2017.8268341
https://doi.org/10.1109/iedm.2017.8268341
https://doi.org/10.1088/0957-4484/23/7/075201
https://doi.org/10.1109/iedm.2017.8268372
https://doi.org/10.1109/iedm.2017.8268372
https://doi.org/10.1109/iscas.2018.8351656
https://doi.org/10.1109/iscas.2018.8351656
https://doi.org/10.1109/prime.2017.7974095
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1109/TNNLS.2017.2726060
http://arxiv.org/abs/http://1510.08829
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.1016/j.neunet.2017.08.008
https://doi.org/10.1016/j.neunet.2017.08.008
https://doi.org/10.1016/j.neunet.2017.08.008
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1038/ncomms13276
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.1007/s00339-011-6264-9
https://doi.org/10.1007/s00339-011-6264-9
https://doi.org/10.1007/s00339-011-6264-9
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1088/0957-4484/20/21/215201
https://doi.org/10.1088/0957-4484/22/25/254023
https://doi.org/10.1088/0957-4484/22/25/254023
https://doi.org/10.1021/nn202983n
https://doi.org/10.1021/nn202983n
https://doi.org/10.1021/nn202983n
https://doi.org/10.1109/iedm.2012.6479018
https://doi.org/10.1109/iedm.2012.6479018
https://doi.org/10.1109/LED.2016.2582859
https://doi.org/10.1109/LED.2016.2582859
https://doi.org/10.1109/LED.2016.2582859
https://doi.org/10.1109/LED.2016.2582859
https://doi.org/10.1109/LED.2016.2622716
https://doi.org/10.1109/LED.2016.2622716
https://doi.org/10.1109/LED.2016.2622716
https://doi.org/10.1088/0268-1242/30/10/105014
https://doi.org/10.1109/iedm.2017.8268522
https://doi.org/10.1109/iedm.2017.8268522
https://doi.org/10.1109/TVLSI.2017.2734819
https://doi.org/10.1109/TVLSI.2017.2734819
https://doi.org/10.1109/TVLSI.2017.2734819
https://doi.org/10.1109/TED.2016.2526647
https://doi.org/10.1109/TED.2016.2526647
https://doi.org/10.1109/TED.2016.2526647


[117] Pedretti G, Milo V, Ambrogio S, Carboni R, Bianchi S,
Calderoni A, Ramaswamy N, Spinelli A and Ielmini D 2018
Stochastic learning in neuromorphic hardware via spike
timing dependent plasticity with RRAM synapses IEEE J.
Emerg. Sel. Topics Circuits Syst. 8 77–85

[118] Prezioso M, Merrikh-Bayat F, Hoskins B D, Likharev K K and
Strukov D B 2016 Self-adaptive spike-time-dependent
plasticity of metal-oxide memristors Sci. Rep. 6 21331

[119] Wang I, Lin Y, Wang Y, Hsu C and Hou T 2014 3D synaptic
architecture with ultralow sub-10 fJ energy per spike for
neuromorphic computation IEEE Int. Electron Devices
Meeting (IEDM) (https://doi.org/10.1109/
iedm.2014.7047127)

[120] Piccolboni G et al 2015 Investigation of the potentialities of
Vertical Resistive RAM (VRRAM) for neuromorphic
applications IEEE Int. Electron Devices Meeting (IEDM)
(https://doi.org/10.1109/iedm.2015.7409717)

[121] Li H et al 2016 Four-layer 3D vertical RRAM integrated with
FinFET as a versatile computing unit for brain-inspired
cognitive information processing Symp. on VLSI Technology
(VLSIT) (https://doi.org/10.1109/vlsit.2016.7573431)

[122] Li Z, Chen P, Xu H and Yu S 2017 Design of ternary neural
network with 3D vertical RRAM array IEEE Trans.
Electron Devices 64 2721–7

[123] Kund M, Beitel G, Pinnow C-U, Rohr T, Schumann J,
Symanczyk R, Ufert K and Muller G 2005 Conductive
bridging RAM (CBRAM): an emerging non-volatile
memory technology scalable to sub 20 nm IEEE Int.
Electron Devices Meeting (IEDM) (https://doi.org/
10.1109/iedm.2005.1609463)

[124] Jo S H, Chang T, Ebong I, Bhadviyq B B, Mazumder P and
Lu W 2010 Nanoscale memristor device as synapse in
neuromorphic systems Nano Lett. 10 1297–301

[125] Liu Q, Long S, Lv H, Wang W, Niu J, Huo Z, Chen J and
Liu M 2010 Controllable growth of nanoscale conductive
filaments in solid-electrolyte-based ReRAM by using a metal
nanocrystal covered bottom electrode ACS Nano. 4 6162–8

[126] Ohno T, Hasegawa T, Tsuruoka T, Terabe K,
Gimzewski J K and Aono M 2011 Short-term plasticity and
long-term potentiation mimicked in single inorganic
synapses Nat. Mater. 10 591–5

[127] Tsuruoka T, Hasegawa T, Terabe K and Aono M 2012
Conductance quantization and synaptic behavior in a
Ta2O5-based atomic switch Nanotechnology 23 435705

[128] Tsuruoka T, Hasegawa T and Aono M 2014 Synaptic
plasticity and memristive behavior operated by atomic
switches 14th Int. Workshop on Cellular Nanoscale
Networks and their Applications (CNNA) (https://doi.org/
10.1109/cnna.2014.6888615)

[129] Roclin D, Bichler O, Gamrat C and Klein J-O 2014 Sneak
paths effects in CBRAM memristive devices arrays for
spiking neural networks IEEE/ACM Int. Symp. on
Nanoscale Architectures (NANOARC) (https://doi.org/
10.1145/2770287.2770291)

[130] Nayak A, Ohno T, Tsuruoka T, Terabe K, Hasegawa T,
Gimzewski J K and Aono M 2012 Controlling the synaptic
plasticity of a Cu2S gap‐type atomic switch Adv. Funct.
Mater. 22 3606–13

[131] Yu S and Wong H S P 2010 Modeling the switching
dynamics of programmable-metallization-cell (PMC)
memory and its application as synapse device for a
neuromorphic computation system IEEE Int. Electron
Devices Meeting (IEDM) (https://doi.org/10.1109/
iedm.2010.5703410)

[132] Yu S, Gao B, Fang Z, Yu H, Kang J and Wong H S P 2013
Stochastic learning in oxide binary synaptic device for
neuromorphic computing Front. Neurosci. 7 186

[133] Suri M, Bichler O, Querlioz D, Palma G, Vianello E,
Vuillaume D, Gamrat C and DeSalvo B 2012 CBRAM

devices as binary synapses for low-power stochastic
neuromorphic systems: auditory (Cochlea) and visual
(Retina) cognitive processing applications IEEE Int.
Electron Devices Meeting (IEDM) (https://doi.org/
10.1109/iedm.2012.6479017)

[134] Suri M, Querlioz D, Bichler O, Palma G, Vianello E,
Vuillaume D, Gamrat C and DeSalvo B 2013 Bio-inspired
stochastic computing using binary CBRAM synapses IEEE
Trans. on Electron Devices 60 2402–9

[135] Suri M and Parmar V 2015 Exploiting intrinsic variability of
filamentary resistive memory for extreme learning machine
architectures IEEE Trans. Nanotechnol. 14 963–8

[136] Gamrat C, Bichleer O and Roclin D 2015 Memristive based
device arrays combined with spike based coding can enable
efficient implementations of embedded neuromorphic
circuits IEEE Int. Electron Devices Meeting (IEDM)
(https://doi.org/10.1109/iedm.2015.7409626)

[137] DeSalvo B, Vianello E, Thomas O, Clermidy F, Bichler O,
Gamrat C and Perniola L 2015 Emerging resistive memories
for low power embedded applications and neuromorphic
systems IEEE Int. Symp. on Circuits and Systems (ISCAS)
(https://doi.org/10.1109/iscas.2015.7169340)

[138] Mahalanabis D, Sivaraj M, Chen W, Shah S, Barnaby H J,
Kozicki M N, Blain Christen J and Vrudhula S 2016
Demonstration of spike timing dependent plasticity in
CBRAM devices with silicon neurons IEEE Int. Symp. on
Circuits and Systems (ISCAS) (https://doi.org/10.1109/
iscas.2016.7539047)

[139] Palma G, Suri M, Querlioz D, Vianello E and De Salvo B 2013
Stochastic neuron design using conductive bridge RAM IEEE/
ACM Int. Symp. on Nanoscale Architectures (NANOARC)
(https://doi.org/10.1109/nanoarch.2013.6623051)

[140] Jang J-W, Attarimashalkoubeh B, Prakash A, Hwang H and
Jeong Y-H 2016 Scalable neuron circuit using conductive-
bridge RAM for pattern reconstructions IEEE Trans.
Electron Devices 63 2610–3

[141] Wong H S P, Kim S B, Liang J, Reifenberg J P, Rajendran B,
Asheghi M and Goodson K E 2010 Phase change memory
Proc. IEEE 98 2201

[142] Burr G W et al 2016 Recent progress in phase-change
memory technology IEEE J. Emer. Sel. Topics Circuits Syst.
6 146–62

[143] Suri M, Bichler O, Hubert Q, Perniola L, Sousa V, Jahan C,
Vuillaume D, Gamrat C and Desalvo B 2012 Interface
engineering of PCM for improved synaptic performance in
neuromorphic systems IEEE Int. Memory Workshop (IMW)
(https://doi.org/10.1109/imw.2012.6213674)

[144] Kuzum D, Jeyasingh R D and Wong H S 2011 Energy
efficient programming of nanoelectronic synaptic devices for
large-scale implementation of associative and temporal
sequence learning IEEE Int. Electron Devices Meeting
(IEDM) (https://doi.org/10.1109/iedm.2011.6131643)

[145] Eryilmaz S B, Kuzum D, Jeyasingh G D, Kim S B,
BrightSky M, Lam C and Wong H S P 2013 Experimental
demonstration of array-level learning with phase change
synaptic devices IEEE Int. Electron Devices Meeting
(IEDM) (https://doi.org/10.1109/iedm.2013.6724691)

[146] Li Y, Zhong Y P, Xu L, Zhang J J, Xu X H, Sun H J and
Miao X S 2013 Ultrafast synaptic events in a chalcogenide
memristor Sci. Rep. 3 1619

[147] Zhong Y P, Li Y, Xu L and Miao X 2015 Simple square pulses
for implementing spike-timing-dependent plasticity in phase-
change memory Phys. Status Solidi Rapid Res. Lett. 9 414

[148] Ambrogio S, Ciocchini N, Laudato M, Milo V, Pirovano A,
Fantini P and Ielmini D 2016 Unsupervised learning by
spike timing dependent plasticity in phase change memory
(PCM) synapse Front. Neurosci. 10 56

[149] Ren K, Li R, Chen X, Wang Y, Shen J, Xia M, Lv S, Ji Z and
Song Z 2018 Controllable SET process in O-Ti-Sb-Te based

32

Nanotechnology 30 (2019) 032001 Topical Review

https://doi.org/10.1109/JETCAS.2017.2773124
https://doi.org/10.1109/JETCAS.2017.2773124
https://doi.org/10.1109/JETCAS.2017.2773124
https://doi.org/10.1038/srep21331
https://doi.org/10.1109/iedm.2014.7047127
https://doi.org/10.1109/iedm.2014.7047127
https://doi.org/10.1109/iedm.2015.7409717
https://doi.org/10.1109/vlsit.2016.7573431
https://doi.org/10.1109/TED.2017.2697361
https://doi.org/10.1109/TED.2017.2697361
https://doi.org/10.1109/TED.2017.2697361
https://doi.org/10.1109/iedm.2005.1609463
https://doi.org/10.1109/iedm.2005.1609463
https://doi.org/10.1021/nl904092h
https://doi.org/10.1021/nl904092h
https://doi.org/10.1021/nl904092h
https://doi.org/10.1021/nn1017582
https://doi.org/10.1021/nn1017582
https://doi.org/10.1021/nn1017582
https://doi.org/10.1038/nmat3054
https://doi.org/10.1038/nmat3054
https://doi.org/10.1038/nmat3054
https://doi.org/10.1088/0957-4484/23/43/435705
https://doi.org/10.1109/cnna.2014.6888615
https://doi.org/10.1109/cnna.2014.6888615
https://doi.org/10.1145/2770287.2770291
https://doi.org/10.1145/2770287.2770291
https://doi.org/10.1002/adfm.201200640
https://doi.org/10.1002/adfm.201200640
https://doi.org/10.1002/adfm.201200640
https://doi.org/10.1109/iedm.2010.5703410
https://doi.org/10.1109/iedm.2010.5703410
https://doi.org/10.3389/fnins.2013.00186
https://doi.org/10.1109/iedm.2012.6479017
https://doi.org/10.1109/iedm.2012.6479017
https://doi.org/10.1109/TED.2013.2263000
https://doi.org/10.1109/TED.2013.2263000
https://doi.org/10.1109/TED.2013.2263000
https://doi.org/10.1109/TNANO.2015.2441112
https://doi.org/10.1109/TNANO.2015.2441112
https://doi.org/10.1109/TNANO.2015.2441112
https://doi.org/10.1109/iedm.2015.7409626
https://doi.org/10.1109/iscas.2015.7169340
https://doi.org/10.1109/iscas.2016.7539047
https://doi.org/10.1109/iscas.2016.7539047
https://doi.org/10.1109/nanoarch.2013.6623051
https://doi.org/10.1109/TED.2016.2549359
https://doi.org/10.1109/TED.2016.2549359
https://doi.org/10.1109/TED.2016.2549359
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1109/JETCAS.2016.2547718
https://doi.org/10.1109/JETCAS.2016.2547718
https://doi.org/10.1109/JETCAS.2016.2547718
https://doi.org/10.1109/imw.2012.6213674
https://doi.org/10.1109/iedm.2011.6131643
https://doi.org/10.1109/iedm.2013.6724691
https://doi.org/10.1038/srep01619
https://doi.org/10.1002/pssr.201510150
https://doi.org/10.3389/fnins.2016.00056


phase change memory for synaptic application Appl. Phys.
Lett. 112 073106

[150] Zhang D, Zeng L, Cao K, Wang M, Peng S, Zhang Y, Zhang Y,
Klein J-O, Wang Y and Zhao W S 2016 All spin artificial
neural networks based on compound spintronic synapse and
neuron IEEE Trans. Biomed. Circuits Syst. 10 828–36

[151] Lequeux S, Sampaio J, Cros V, Yakushiji K, Fukushima A,
Matsumoto R, Kubota H, Yuasa S and Grollier J 2016 A
magnetic synapse: multilevel spin-torque memristor with
perpendicular anisotropy Sci. Rep. 6 31510

[152] Vincent A F, Larroque J, Zhao W S, Romdhane N B, Bichler O,
Gamrat C, Klein J-O, Galdin-Retailleau S and Querlioz D 2014
Spin-transfer torque magnetic memory as a stochastic
memristive synapse IEEE Int. Symp. on Circuits and Systems
(ISCAS) (https://doi.org/10.1109/iscas.2014.6865325)

[153] Sharad M, Augustine C, Panagopoulos G and Roy K 2012
Spin-based neuron model with domain-wall magnets as
synapse IEEE Trans. Nanotechnol. 11 843–53

[154] Sengupta A, Azim Z A, Fong X and Roy K 2015 Spin–orbit
torque induced spike-timing dependent plasticity Appl. Phys.
Lett. 106 093704

[155] Sengupta A, Banerjee A and Roy K 2016 Hybrid spintronic-
CMOS spiking neural network with on-chip learning:
devices, circuits, and systems Phys. Rev. Appl. 6
064003

[156] Sengupta A and Roy K 2016 Short-term plasticity and long-
term potentiation in magnetic tunnel junctions: towards
volatile synapses Phys. Rev. Appl. 5 024012

[157] Srinivasan G, Sengupta A and Roy K 2016 Magnetic tunnel
junction based long-term short-term stochastic synapse for a
spiking neural network with on-chip STDP learning Sci.
Rep. 6 29545

[158] Borders W A, Akima H, Fukami S, Moriya S, Kurihara S,
Horio Y, Sato S and Ohno H 2017 Analogue spin–orbit

torque device for artificial-neural-network-based associative
memory operation Appl. Phys. Express 10 013007

[159] Diorio C, Hasler P, Minch B A and Mead C A 1996 A single-
transistor silicon synapse IEEE Trans. Electron Devices 43
1972–80

[160] Alibart F, Pleutin S, Bichler O, Gamrat C,
Serrano-Gotarredona T, Linares-Barraco B and Vuillaume D
2012 A memristive nanoparticle/organic hybrid synapstor
for neuro-inspired computing Adv. Funct. Mater. 22 609–16

[161] Riggert C, Ziegler M, Schroeder D, Krautschneider W H and
Kohlstedt H 2014 MemFlash device: floating gate transistors
as memristive devices for neuromorphic computing
Semicond. Sci. Technol. 29 104011

[162] Kuzum D, Yu S and Wong H S 2013 Synaptic electronics:
materials, devices and applications Nanotechnology 24 382001

[163] Kim H, Park J, Kwon M-W, Lee J-H and Park B-G 2016
Silicon-based floating-body synaptic transistor with
frequency-dependent short- and long-term memories IEEE
Electron Device Lett. 37 249–52

[164] Stoliar P, Schulman A, Kitoh A, Sawa A and Inoue I H
2017 STDP synapse with outstanding stability based on a
novel insulator-to-metal transition FET IEEE Int. Electron
Devices Meeting (IEDM) (https://doi.org/10.1109/
iedm.2017.8268506)

[165] Mulaosmanovic H, Ocker J, Müller S, Noack M, Müller J,
Polakowski P, Mikolajick T and Slesazeck S 2017 Novel
ferroelectric FET based synapse for neuromorphic systems
Symp. on VLSI Technology (VLSIT) (https://doi.org/
10.23919/vlsit.2017.7998165)

[166] Jerry M, Chen P-Y, Zhang J, Sharma P, Ni K, Yu S and
Datta S 2017 Ferroelectric FET analog synapse for
acceleration of deep neural network training IEEE Int.
Electron Devices Meeting (IEDM) (https://doi.org/
10.1109/iedm.2017.8268338)

33

Nanotechnology 30 (2019) 032001 Topical Review

https://doi.org/10.1063/1.5018513
https://doi.org/10.1109/TBCAS.2016.2533798
https://doi.org/10.1109/TBCAS.2016.2533798
https://doi.org/10.1109/TBCAS.2016.2533798
https://doi.org/10.1038/srep31510
https://doi.org/10.1109/iscas.2014.6865325
https://doi.org/10.1109/TNANO.2012.2202125
https://doi.org/10.1109/TNANO.2012.2202125
https://doi.org/10.1109/TNANO.2012.2202125
https://doi.org/10.1063/1.4914111
https://doi.org/10.1103/PhysRevApplied.6.064003
https://doi.org/10.1103/PhysRevApplied.6.064003
https://doi.org/10.1103/PhysRevApplied.5.024012
https://doi.org/10.1038/srep29545
https://doi.org/10.7567/APEX.10.013007
https://doi.org/10.1109/16.543035
https://doi.org/10.1109/16.543035
https://doi.org/10.1109/16.543035
https://doi.org/10.1109/16.543035
https://doi.org/10.1002/adfm.201101935
https://doi.org/10.1002/adfm.201101935
https://doi.org/10.1002/adfm.201101935
https://doi.org/10.1088/0268-1242/29/10/104011
https://doi.org/10.1088/0957-4484/24/38/382001
https://doi.org/10.1109/LED.2016.2521863
https://doi.org/10.1109/LED.2016.2521863
https://doi.org/10.1109/LED.2016.2521863
https://doi.org/10.1109/iedm.2017.8268506
https://doi.org/10.1109/iedm.2017.8268506
https://doi.org/10.23919/vlsit.2017.7998165
https://doi.org/10.23919/vlsit.2017.7998165
https://doi.org/10.1109/iedm.2017.8268338
https://doi.org/10.1109/iedm.2017.8268338

	1. Introduction
	2. Learning algorithms for implementing ANN
	2.1. Bio-inspired learning algorithms (STDP/SRDP)
	2.1.1. Methods of neural encoding
	2.1.2. Supervised learning
	2.1.3. Unsupervised learning
	2.1.4. Requirements

	2.2. Software-based learning algorithm (BP)
	2.2.1. Off-chip training
	2.2.2. On-chip training
	2.2.3. Requirements

	2.3. DSNNs
	2.3.1. Conversion from SW-DNNs to SNN
	2.3.2. BP using spike


	3. Synaptic devices for implementing ANN
	3.1. RRAM
	3.2. CBRAM
	3.3. PCM
	3.4. Spin-based
	3.5. FET-based

	4. Conclusion
	Acknowledgments
	References



