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Abstract— We investigate the characteristics of a synap-
tic imitation device using a thin-film transistor (TFT)-type
NOR flash memory cell with a half-covered floating gate.
The long-term potentiation (LTP) and long-term depres-
sion (LTD) required for the operation of the spike-timing-
dependent plasticity (STDP) algorithm are implemented
using the proposed pulse scheme. Unsupervised learning is
successfully demonstrated by applying the STDP learning
rule through software MATLAB simulation reflecting the
LTP/LTD characteristics of the fabricated TFT-type NOR flash
memory array. We present the learning and recognition
processes of 28 × 28 MNIST handwritten digit patterns.
First, STDP learning in a single-neuron string (784 × 1) is
investigated, after which STDP learning is demonstrated
in a multineuron array (784 × 10) with a lateral inhibition
function to demonstrate the ability of multipattern learning
and recognition. Meanwhile, we investigate the key factors
of STDP unsupervised learning. Finally, an approach is
suggested to implement a hardware neural network using
the conventional CMOS technology for STDP unsupervised
learning as a visual pattern recognition system.

Index Terms— Neuromorphic, NOR flash memory, pattern
recognition, spike-timing-dependent plasticity (STDP),
thin-film transistor (TFT), unsupervised learning.

I. INTRODUCTION

RECENTLY, neuromorphic systems have been studied in
an effort to overcome the limitations of the von Neu-

mann architecture [1]. Given that the existing von Neumann
computer architecture is very limited in terms of speed and
power consumption for high-level recognition applications
and processing, research on and the development of neuro-
morphic technology to resolve these issues have been active
areas [2]. In the field of software, research on deep neural
networks (DNNs) using back-propagation algorithms [3] has
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been highlighted for its excellent cognitive ability, and efforts
have been made to apply the findings to the hardware neural
network (HNN) [4], [5]. Another aspect of implementing
such an HNN is to use the spike-timing-dependent plastic-
ity (STDP) algorithm, one of several learning algorithm that
mimics the biological behavior of how the synapses operate in
the brain [6]. Thus far, there have been many reports on pattern
recognition systems which work via supervised learning based
on a DNN [4], [7]. However, there are many applications
where brain-inspired unsupervised learning can also be used
in actual machine learning [8]. In order to implement an HNN
using the STDP algorithm, it is important to imitate long-term
potentiation (LTP)/long-term depression (LTD) functionalities
as electrical elements according to the spike firing sequence
in actual biological synapses and neurons [9]. Many studies
have attempted to reproduce synaptic plasticity with electronic
devices through the CMOS very large scale integration cir-
cuits [10], [11]. In addition, several circuits which simulate
biological neurons have been reported [12]. In recent years,
studies on the construction of a synapse array using a mem-
ristor crossbar array have been actively conducted [13]–[17].
However, the memristors still have disadvantages in terms
of device characteristic fluctuations and reliability when con-
structed as a large-scale crossbar array [18], [19]. The device
characteristic fluctuation of memristors causes degradation of
the recognition rate in the pattern recognition process on the
actual artificial neural network [20]. In order to overcome
these problems, research on an electric synapse based on
a CMOS field-effect transistor (FET) has been carried out
recently. As a result of these efforts, several devices have been
introduced, including NOMFETs [21] and MemFlash [22].
However, in one of these studies [21], metal nanoparticles are
used for the memory function, causing a compatibility issue
with the CMOS process. In [22], the method used to construct
a large neural array and the method of operating it remain
unclear. In this paper, we fabricate a thin-film transistor (TFT)-
type NOR flash memory array using the conventional CMOS
fabrication process and suggest an approach to use TFT-type
NOR flash memory as synapse-like neuromorphic hardware.
The fabricated NOR flash array structure can easily be used to
form a large-scale neural network, and it is possible to update
the neuron unit synapse weight through a pulse scheme, also
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Fig. 1. (a) Bird’s eye view of a TFT-type NOR flash memory array and
cross-sectional views cut in the (b) WL direction and (c) BL direction.

proposed here, thereby mitigating the need for an additional
control circuit. Finally, we report successful simulation results
of unsupervised learning using STDP in our TFT-type NOR

flash memory array.

II. DEVICE STRUCTURE AND FABRICATION

Fig. 1(a) shows a bird’s eye view of a TFT-type NOR

flash memory array. Cross sections cut along the directions
of A–A� and B–B� are shown in Fig. 1(b) and (c), respectively.
As shown in Fig. 1(a), each word-line (WL) and bitline (BL)
intersect with each other in the form of a crossbar, which
simplifies scaling memory arrays on a large scale. In Fig. 1(b),
the drain and source of each device are connected by a poly-
Si channel that is half-covered with an n+ poly-Si floating
gate (FG) through an interpoly dielectric material. Different
devices are controlled simultaneously through a single WL.
The half-covered FG is located between the WL and the source
such that the program and erase memory operations take place
when voltage is applied between these two electrodes. Because
the FG covers only half of the channel, VT does not fall
below 0 in the full erase state of the device, thereby preventing
leakage current during the operation of the device array. This
results in a reduction of the standby power due to the excessive
potentiation of synaptic elements during the unsupervised
learning method. In Fig. 1(c), the device array structure in the

Fig. 2. (a)–(f) Schematic cross-sectional views of the key fabrication
process steps. (g) Process flow of the fabrication of TFT-type NOR flash
memory.

BL direction can be confirmed. The FGs of adjacent devices
are isolated from each other and are configured to perform
their own memory operations. However, the positioning of the
source and drain running side by side in the BL direction is
common among n memory cells under n WLs, which enables
current summing from n NOR flash memory cells. Thus, each
memory cell can transmit its own memory information to the
BL in the form of a summed current in a common BL. This
configuration is similar to that of biological synapses, in which
each synapse reflects its own weight information and combines
it in the signal sent to the next neuron.

TFT-type NOR flash memory arrays are fabricated on a
6-in Si wafer with conventional CMOS process technology.
The key fabrication process steps are shown in Fig. 2.
A layer of n+-doped poly-Si was formed on an insulator
layer deposited on the wafer. After the doped poly-Si layer
was patterned (first mask), a 20-nm-thick amorphous Si active
layer was deposited, poly-crystalized by annealing, and then
patterned (second mask). A 7-nm-thick layer of SiO2 was
then deposited as a tunneling oxide (Tox) layer, after which
a layer of n+-doped poly-Si was formed and patterned as a
FG (third mask). SiO2 was then deposited at a thickness of
15 nm as a blocking oxide (Box) layer. The n+-doped poly-Si
was formed and patterned above the Box as control gate (CG)
(fourth mask). After tetraethyl orthosilicate deposition, contact
holes for the CGs, FGs, sources, and drains were formed
(fifth mask). Subsequently, Ti/TiN/Al/TiN electrodes were
formed by sputtering and were then patterned (sixth mask).
Scanning electron microscope (SEM) images of a fabricated
device are shown in Fig. 3. Fig. 3(a) shows an SEM image of
the step corresponding to Fig. 2(b). Fig. 3(b) shows a bird’s eye
view of the same step. Fig. 3(c) and (d) shows SEM images
of key fabrication steps corresponding to Fig. 2(d) and (f),
respectively. For the fabricated cell devices in the array,
the width of the CG (WCG) is 2 µm and the length between
the source and drain (LCG) is 0.5 µm. One memory cell can
be scaled down to 8 F2 if the WCG is scaled to the minimum
feature size (F).
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Fig. 3. SEM cross-sectional images of fabricated structures.
(a) and (b) Images corresponding to the step shown in Fig. 2(b). (c) Image
corresponding to the step shown in Fig. 2(d). (d) Image corresponding
to the step shown in Fig. 2(f).

Fig. 4. Drain current versus CG bias of fabricated TFTs as a parameter
of the drain voltage (VD). (a) Reference FET (no FG). (b) TFT-type NOR
flash memory cell. There is no net charge in the FG.

III. DEVICE MEASUREMENT RESULTS

AS A SYNAPSE DEVICE

The ID–VCG characteristics of a reference TFT and a
TFT-type NOR flash memory cell as a parameter of VD

are shown in Fig. 4(a) and (b), respectively. The memory
device with the FG has a larger subthreshold swing and lower
ON-current value compared to the reference FET because the
oxide between the CG and FG increases the effective gate
oxide thickness. All of the memory cells fabricated in an array
show similar ID–VCG characteristics in their initial state. The
charge stored in the FG of each memory cell is reflected in the
on current, which flows to the common BL in the array, having
the same effect as a weighted sum in the synapse processes.
Fig. 5 shows the circuit topology of a neural network system
when implemented with a TFT-type NOR flash memory array.
The pattern images transmitted from the PRE neurons are
input into the WLs of the memory cells. The signals input to
the WLs are converted into current by reflecting the weights
stored in the synapses and are then summed in the common
drain line (CDL) of the array. The current in the CDL flows
to the POST neuron circuitry outside the array via a current
mirror circuit. The current is accumulated in the membrane
capacitor of the POST neuron, causing the neuron to fire if the

Fig. 5. Schematic circuit diagram of an unsupervised neuromorphic
network with a TFT-type NOR flash memory array and a neuron circuit.

Fig. 6. (a) Schematic of PRE (input) and POST (feedback) electrodes
that cause a weight update and (b) pulse scheme of PRE and POST
neurons to the TFT-type NOR flash memory array that causes an LTP
and LTD by erasing (ERS) and programming (PGM) of the memory cell.

membrane potential exceeds a certain threshold. Each POST
neuron is connected via an FET-type inhibitory synapse that
performs an inhibition action, thereby suppressing the firing
actions of neurons other than itself. The firing signal of the
POST neuron triggers a switch between the common source
line (CSL) and the ground so that the CSL can be connected to
the spike generation circuit. The firing signal is also transferred
to a spike generation circuit which generates a feedback spike
pulse to the CSL of its own array and an output spike pulse
to the WLs of the synapse array in the next layer. In this way,
neuron-based synapse weight updates can be done without
additional circuitry or sequential update procedures.

For the STDP operation, the synapse cells can be potenti-
ated or depressed selectively using the pulse scheme shown
in Fig. 6. The basic principles of LTP/LTD operation in
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Fig. 7. LTP/LTD repetition characteristics of a device measured using
the pulse scheme of Fig. 6.

TABLE I
BIAS CONDITIONS FOR THE WEIGHT-UPDATE (LTP/LTD) AND

WEIGHT-READ OPERATIONS OF CELLS IN A SYNAPSE ARRAY

synapse cells are as follows. When a certain neuron is fired,
the synapse cells that contribute to the neuron’s firing are
subjected to the LTP process by overlapping the input signal
with the feedback signal from the neuron. On the other hand,
in the case of synapse cells in which no input signal is input,
the feedback signal itself is subjected to the LTD process.
The pulse scheme of this type has been studied in [20].
As shown in Fig. 6(a), input signals from the PRE neurons
and a feedback signal from the spike generation circuit are
applied to the WLs and the CSL, respectively, to change the
weights of synapse cells. The program and erase operation
of the charge stored in the FG is performed according to
the voltage state of the WL and the source connected to the
CSL. When the input pulse is applied and the neuron is fired,
the tail portion of the input pulse overlaps the head portion
of the feedback pulse, as represented by the LTP operation
shown in Fig. 6(b). A pulse of −8.5 V, as represented by
Xpre− Xpost in Fig. 6(b), is then applied to the WL for 100 µs,
resulting in the erase operation in the FG, which mimics
the LTP operation of the synapse. In contrast, when there
is no input signal from the PRE input, only the feedback
pulse is applied to the source of the memory cell. This is
equivalent to applying a pulse with a magnitude of 5.5 V and
a width of 100 µs to the WL, which stores electrons in the
FG (program operation), having the same effect as the LTD of
the synapse. Table I summarizes the pulse schemes for these
weight-update and weight-read operations. During the weight
update, the CDL electrode is floated, which reduces power
consumption by preventing leakage current that may occur
during the programming and erasing of the device. A read
pulse of 3 V for reading and summing the weights of the

TABLE II
FITTING PARAMETER VALUES OF MODEL

EQUATIONS FOR THE SIMULATION

Fig. 8. STDP behavior depending on the current weight in a synaptic
device when the current weight is (a) low (case 1, low G/Gmin: 19.7),
(b) moderate (case 2, moderate G/Gmin: 56.1), and (c) high (case 3,
high G/Gmin: 79.3).

Fig. 9. Flowchart of pattern (a) learning and (b) recognition, and
(c) 10 28 × 28 MNIST handwritten digits used in this simulation.

synapses is applied to the WL for 100 µs. The pulse scheme
for the synapse weight update described above was applied
to actual devices; these results are shown in Fig. 7. Twenty
sequential repetitive LTP pulses followed by 20 repetitive LTD
pulses are applied to the WL and the source electrode of the
device, after which the weight of the device is read. In this
case, the pulse scheme used in each operation is identical to
the pulse scheme in Table I. The repeated increase of the
synapse weight is confirmed by the repeated application of
the LTP pulse, which is dependent on the amount of charge
stored in the FG. Therefore, the degree of the weight update
depends on the state of the weight of the synapse element,
and it is necessary to model these characteristics to perform
system-level simulation. The behavioral modeling results and
the parameters used are summarized in Table II. This modeling
yields individual STDP actions according to the weight state
of the synapse. Fig. 8 shows the STDP curves for the three
representative weight states derived from the modeling results.

IV. SIMULATION RESULTS OF PATTERN CLASSIFICATION

Fig. 9(a) and (b) shows a flowchart of the overall pattern
learning and recognition processes used in the simulation,
respectively. The simulation was performed with MATLAB,
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Fig. 10. Unsupervised pattern learning and updating results with a single
neuron. Average weights of the targeted pattern synapses (PTN, solid
symbols) and the background synapses (BGD, open symbols) when the
first pattern 2, the second pattern 5, and the third pattern 9 in Fig. 9(c)
were learned 80 times in order. Inset: weight map of the synapse array
at the time of each epoch.

and the operating characteristics of a synapse were determined
by the measured characteristics of a TFT-type NOR flash
memory cell. It was assumed that a neuron consists of an
ideal capacitor and a comparator. The pattern learning process
is illustrated in Fig. 9(a). First, we randomize the weights of
all synapses to initialize the synaptic array. In the PRE target
images for learning, only the parts where the input value of
the pixels exist in the corresponding images, trigger to input
Xpre pulse in Fig. 6(b) to the WLs of the pixels, which can
cause the firing of the POST neuron through the integrate-and-
fire circuit. This POST synaptic spike is transmitted to other
neurons and inhibits them by discharging the accumulated
charges in the integrate capacitors of the neurons. This process
allows each neuron to learn its own unique image pattern,
thus implementing pattern classification. The fired neuron
also transmits its feedback spike to the CSLs of the synapse
cells connected to it, which immediately updates the synapse
weights. Fig. 9(b) explains the recognition process in neurons
connected to learned synapses. Note that additional circuitry
such as that for lateral inhibition and feedback spike transfers
is not required during the recognition process. When target
image is input, the resulting POST neuron spike through
the integrate-and-fire circuit can be observed. At this time,
the recognition result can be confirmed by comparing the firing
rate of the learned neuron with the firing rates of other neurons.
Fig. 9(c) shows the 10 28 × 28 MNIST handwritten target
digits used in this learning simulation.

Fig. 10 shows the pattern learning process in a single neuron
containing 784 (28 × 28) synaptic devices (i.e., 784 × 1).
It is confirmed that the synaptic weights of the array update
correctly based on the STDP action in the synapse array when
each image is presented 80 times sequentially. The inset figures
show the weight of each synapse in the array when each input
pattern is applied. The initial synaptic weights are randomly
distributed between the minimum to maximum weights of the
proposed memory cells. The weight learning for pattern 2 is
completed through 80 epochs, and after 80 consecutive epochs,
learning of the weights corresponding to pattern 5 has been
achieved, and after 80 succeeding epochs, weight learning
for pattern 9 has been completed. This result shows that the

Fig. 11. Result of unsupervised multipattern learning and recognition
with the multineuron array. (a) Process of changing the weights of the
synapses corresponding to each neuron is shown when patterns 0–9 in
Fig. 9(c) were randomly presented 800 times. (b) Classification behavior
of neurons when random digit patterns are applied after the multipattern
learning process.

learning of the desired input pattern and pattern updating
are performed successfully. For the proposed unsupervised
pattern learning, there are no additional input signals (such
as the input noise used in [15]) which consume more power
and make the learning process more complex. In this single-
neuron learning process, the range of synaptic weights has
an important influence on the pattern recognition rate. There
should be a certain level of weight difference between targeted
synapses and background synapses to distinguish the desired
pattern from unlabeled patterns in the pattern recognition
process. Therefore, it is highly desirable to maximize the range
of synapse weights by optimizing the memory characteristics
and pulse scheme of the device for more accurate pattern
classification.

Fig. 11 shows the pattern learning and recognition results for
a multineuron array (784 × 10) composed of 784 PRE-input
neurons and 10 POST neurons. To implement the lateral
inhibition function, inhibitory synapses are used to lower the
membrane potential of neurons other than the fired neuron.
This inhibitory synapse is realized by an inhibitory FET
connected to the membrane capacitor of each neuron, as shown
in Fig. 5. As shown in Fig. 5, each POST neuron is connected
to each other through this inhibitory FET. An inhibitory
factor (in this case 47%), which determines the amount of
membrane potential reduction in neurons except fired neuron,
should be considered carefully. If the inhibitory factor is too
high, only a small number of neurons will fire repeatedly,
interfering with the learning of other neurons, while if it is
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too low, it will be difficult to distinguish each neuron’s own
learning pattern. Fig. 11(a) shows the progress of multineuron
learning when the input digit patterns are presented repeatedly
through the PRE input of the synaptic array. This shows
the process of changing the weight states of the synapses
corresponding to each neuron at representative epoch numbers.
In the early stages of learning, there are oscillations of the
pattern weights, but after a certain number of epochs, the
weights of the synapses belonging to each neuron are gradually
tuned according to a different pattern. The classification ability
of patterns using the synapse array that has undergone this
multipattern learning process is shown in Fig. 11(b). Fig. 11(b)
shows how POST neurons fire in response to each input pattern
when 10 digit patterns are applied in a random order. The
digit pattern can be recognized by comparing the POST firing
rate of a neuron that learned the digit pattern with the POST
firing rate of other neurons. Thus, 10 distinct patterns in a
multineuron array can be effectively distinguished.

V. CONCLUSION

Here, we fabricated successfully a TFT-type NOR flash
memory to be used in a synapse array for unsupervised
learning using the STDP learning algorithm. The fabrication
process of the TFT-type NOR flash memory device was
explained and its characteristics as an electronic synapse
device were analyzed. Because the structure can perform
program/erase operations by changing the gate and source
voltages, it is possible to implement the STDP characteristic
of a synapse without any additional circuit configuration.
In addition, WLs and BLs are configured as the crossbar
types, enabling excellent scalability for large-scale synapse
arrays. Moreover, unsupervised learning with the STDP
learning rule was demonstrated in a TFT-type NOR flash
memory array. Through MATLAB simulation, the learning
of 28 × 28 MNIST handwritten digit patterns was done based
on the STDP characteristics of the NOR flash devices, and
the pattern recognition performance was investigated. It was
confirmed that learning and recognition are possible in single-
(784 × 1) and multineuron (784 × 10) arrays. We presented
the feasibility of implementing a scalable pattern recognition
neuromorphic system using our NOR flash memory devices
through system-level software MATLAB simulation.
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