Density-of-States (DOS)-based I-V and C-V Models and Link to Circuit Simulator for Polymer Thin Film Transistors (PTFTs)

Jaeman Jang, Jaehyeong Kim, Jaewook Lee, Hyeongjung Kim, Dong Myong Kim, and Dae Hwan Kim

School of Electrical Engineering, Kookmin University, Seoul 136-702, Korea (∗drlife@kookmin.ac.kr)

Abstract

The 3 key results were reported with I-V and C-V models linked to Hspice circuit simulator for polymer-based thin film transistors (PTFTs): (1) The subgap density of states (DOS) extraction of the PTFTs by multi-frequency capacitance-voltage (MFCV) spectroscopy; (2) Analytical PTFT models based on the process-controlled parameters including subgap DOS; (3) Analytical model for circuit design incorporated into Hspice via Verilog-A. Our approach is expected to be a powerful platform for the systematic design of PTFTs.

1. Introduction

Polymer-based thin film transistors (PTFTs) are under active research for the low-cost integrated circuit and system on the flexible large-area substrate due to low temperature and printing fabrication capability [1,2]. As the demand for various applications increases, PTFT models become essential for accurate prediction of performance and systematic design of PTFT-based circuits [3]. To realize it, the density-of-states (DOS)-based models are positively necessary. We have reported that extraction of the sub-bandgap DOS ($g(E)$) in PTFT by multi-frequency capacitance-voltage (MFCV) spectroscopy [4]. Three clear motivations of this work can be summarized as (1) subgap DOS extraction of the PTFTs by MFCV spectroscopy; (2) analytical PTFT models based on the process-controlled parameters including extracted subgap DOS; (3) analytical model for circuit design and incorporation into Hspice via Verilog-A.

2. PTFT Fabrication and Device Structure

Fig. 1(a) shows an array of semitransparent polymer transistors printed on a glass substrate. Fig. 1(b) shows a schematic cross-sectional view of the PTFT with a coplanar structure. The polymer semiconductor was dissolved in tetrahydrophthalene (THN) at a concentration of 0.2 wt%, and then ink-jet printed via Dimatix printer. The fabricated PTFTs with a coplanar structure has the channel width $W=120$ μm, the gate-to-S/D overlap length $L_{Ox}=10$ μm, gate insulator thickness $T_{Ox}=300$ nm, and the thickness of polymer film $T_{Active}=50$ nm (confirmed by FIB-SEM).

3. Results and Discussion

The extraction procedure of $g(E)$ by the MFCV spectroscopy is shown in Fig. 2. Fig. 3 shows the calculation flow about numerical and analytical current-voltage (I-V) models. The models start with $g(E)$ obtained by the MFCV spectroscopy. The analytical model is based on the effective carrier density combined with a coupled-Schottky diode model for the non-linearity and the Poole-Frenkel mobility model for the lateral field-dependent carrier transport. We expect that the proposed analytical model can be employed for a fast and efficient circuit design.

Fig. 4 shows the measured and calculated I_{DS}-V_{DS} characteristics of driver/load-PTFTs in diode-load type inverter through inkjet printing process on a glass wafer with model parameters in Table II. They agree well with each other over a wide voltage range. Fig. 5 shows the load line and VTC of the PTFT-based inverter. DC characteristics are well reproduced by the analytical model. We note that the proposed C-V model is also consistent with the measured quasi-static C-V characteristics as shown in Fig. 6(a). Calculated capacitances for the gate-to-drain (C_{gd}), and gate-to-source (C_{gs}) are shown in Fig. 6(b) as a function of the drain bias. Measured transient characteristics are compared with the Hspice simulation result based on the proposed I-V and C-V models as shown in Fig. 7.

4. Summary

In summary, we reported I-V & C-V models linked to Hspice circuit simulator for polymer TFTs with 3 key results: (1) The subgap DOS extraction of the PTFTs by MFCV spectroscopy; (2) Analytical PTFT models based on the process-controlled parameters including DOS; (3) Analytical model for circuit design incorporated into Hspice via Verilog-A. Our approach is potentially expected to be a robust platform for a systematic design of PTFTs through the material/process optimization.

Acknowledgements

This work was supported by the National Research Foundation (NRF) grant funded by the Korea government (MEST) No. 2012-0000147 and No. 2012-0005001.

The devices were supported by Samsung Advanced Institute of Technology (SAIT).

References

Fig. 1. (a) A photograph of PTFTs and circuit integrated on a glass wafer. (b) A schematic illustration of the integrated PTFT.

Fig. 2. (a) The equivalent R-C models of PTFTs (b) The calculated C_{GS} from f-dependent C_{TF}-VGS characteristics is shown as an inset. (c) Extracted VGS-dependent R_0 obtained from the high frequency $|Z_{in}|$ under a fixed VGS as shown in the inset. (d) Extraction of R_0 using the MFCV spectroscopy.

Fig. 3. The calculation flow for the analytical I-V models with same parameters (g(E), p_{AND}, N_0). Analytical model flow: Fixed input parameters (P_{eff}=N_{TFD}, kT_{eff}=kT_{TFD}, W, L, T_{OX}, Schottky barrier (ϕ_b)).

Table I. Extracted parameters for the driver/load PTFTs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p_{AND}</th>
<th>N_0</th>
<th>ϕ_b</th>
<th>V_{ON}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver-TFT</td>
<td>0.146</td>
<td>2.5x10^{19}</td>
<td>0.45</td>
<td>-1.5</td>
</tr>
<tr>
<td>Load-TFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Measured I_{DS}-V_{GS} characteristics (symbol) of (a), the driver-PTFT and (c), the load-PTFT. The lines indicate the calculated by the extracted parameters with the analytical model.

Fig. 5. (a) Measured load line curve, (b) Measured VTC curves compared with simulated ones; they agree well with simulated ones.

Fig. 6. (a) Measured VOD-dependent C_{GS}-V_{OD} curves, (b) Calculated C_{GS}-V_{SG} and C_{GD}-V_{SG} Curves by the analytical model.

Fig. 7. Measured transient characteristics (symbol) of the PTFT-based inverter circuit are compared with the proposed analytical model-based verilog-A and Hspice simulation incorporating the extracted parameters. They agree very well with each other over a wide range of V_{SS}.