Monochromatic Photonic Capacitance-Voltage Technique for Donor- and Acceptor-Like Density-of-States over the Full-Energy Range in Amorphous TFTs

Hagyoul Bae¹, Hyunjun Choi¹, Sungwoo Jun¹, Chunhyung Jo¹, Yun Hyek Kim¹, Jaewook Lee¹, Seonwook Hwang¹, Euiyoon Hong¹, Inseok Huh¹, Jun Seok Hwang¹, Jae yeop Ahn¹, Dae Geun Kim¹, Bong Sik Choi¹, Saeroonder Oh², Dae-Hawn Kim², Jonguk Bae², and Dong Myong Kim¹

School of Electrical Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul, 136-702, KOREA¹ dmkim@kookmin.ac.kr
Research and Development Center, LG Display, Paju 413-811, KOREA²

Abstract

We report a novel technique for extraction of subgap donor and acceptor density-of-states (DOS) over the full energy range \((E_g < E < E_F)\) by using monochromatic photonic capacitance-voltage (MPCV) technique in n-channel a-IGZO TFTs. In the proposed method, we extract donor- and acceptor-like states \((g_D(E) \text{ and } g_A(E))\) as the subgap DOS under depletion \((V_{GS} < V_{TH})\) and accumulation \((V_{GS} > V_{TH})\) bias by employing a sub-bandgap optical source. We obtained \(g_D(E)\) and \(g_A(E)\) over the full energy range as a superposition of the exponential deep and tail states as well as shallow donor states with \(N_{DD} = 8.0 \times 10^{11} \text{ [eV}^{-1}\text{cm}^{-3}]\), \(kT_D = 0.16 \text{ [eV]}\), \(N_{TD} = 5.0 \times 10^{17} \text{ [eV}^{-1}\text{cm}^{-3}]\), \(kT_D = 0.47 \text{ [eV]}\), and \(N_{SD} = 1.5 \times 10^{17} \text{ [eV}^{-1}\text{cm}^{-3}]\), \(kT_S = 0.16 \text{ [eV]}\).

I. Introduction

Amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin film transistors (TFTs) are known to be prospective devices for possible application to active-matrix organic light-emitting diode displays (AMOLEDs) and flexible displays due to low temperature, large uniformity, and high carrier mobility [1]. Among electrical properties, experimental modeling and characterization of the subgap density-of-states (DOS) is important to estimate the reliability and stability caused by the fabrication process, layout, and long-term performance associated with robust circuits and systems. There have been works on the analysis and extraction of subgap DOS in a-IGZO TFTs [2-3]. Especially, a qualitative analysis of the subgap DOS for instability under the negative/positive bias illumination stress (N/PBIS) has become a significant issue [4-5].

In this work, we report a technique for extraction of the full-energy range subgap DOS \((g_D(E) \text{ and } g_A(E))\) by using a capacitance-voltage data under dark and photonic states with subgap optical source \(h \nu = E_g \approx 2.6 \text{ eV} \approx E_F\) as a monochromatic photonic capacitance-voltage (MPCV) technique. Through the proposed technique, it is possible to extract the full range subgap DOS over the bandgap in the active amorphous semiconductor layer. Using only one-shot C-V measurement as a function of the gate bias \((V_{GS})\), the subgap DOS can be characterized for the dependence on material, fabrication process, and electrical stress of the active layer. We expect that the proposed method is a powerful tool for characterization of amorphous active layers in TFTs without iteration procedure and/ or complicated calculation.

II. Characterization of \(g_D(E)\) and \(g_A(E)\) over the Bandgap

Fig. 1 shows cross-sectional view and setup for the C-V measurement of n-channel a-IGZO TFTs with an inverted staggered bottom gate. Capacitive equivalent circuit with photo-responsive capacitance \((C_{photo}^D) \text{ and } C_{photo}^A)\) are include for the carriers generated from the localized traps in the amorphous active layer. In Fig. 1(a), negative/positive bias illumination stress \((V_{GS} < V_{TH})\) and \((V_{GS} > V_{TH})\) under photonic state.

Abstract

We report a novel technique for extraction of subgap donor and acceptor density-of-states (DOS) over the full energy range \((E_g < E < E_F)\) by using monochromatic photonic capacitance-voltage (MPCV) technique in n-channel a-IGZO TFTs. In the proposed method, we extract donor- and acceptor-like states \((g_D(E) \text{ and } g_A(E))\) as the subgap DOS under depletion \((V_{GS} < V_{TH})\) and accumulation \((V_{GS} > V_{TH})\) bias by employing a sub-bandgap optical source. We obtained \(g_D(E)\) and \(g_A(E)\) over the full energy range as a superposition of the exponential deep and tail states as well as shallow donor states with \(N_{DD} = 8.0 \times 10^{11} \text{ [eV}^{-1}\text{cm}^{-3}]\), \(kT_D = 0.16 \text{ [eV]}\), \(N_{TD} = 5.0 \times 10^{17} \text{ [eV}^{-1}\text{cm}^{-3}]\), \(kT_D = 0.47 \text{ [eV]}\), and \(N_{SD} = 1.5 \times 10^{17} \text{ [eV}^{-1}\text{cm}^{-3}]\), \(kT_S = 0.16 \text{ [eV]}\).

I. Introduction

Amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin film transistors (TFTs) are known to be prospective devices for possible application to active-matrix organic light-emitting diode displays (AMOLEDs) and flexible displays due to low temperature, large uniformity, and high carrier mobility [1]. Among electrical properties, experimental modeling and characterization of the subgap density-of-states (DOS) is important to estimate the reliability and stability caused by the fabrication process, layout, and long-term performance associated with robust circuits and systems. There have been works on the analysis and extraction of subgap DOS in a-IGZO TFTs [2-3]. Especially, a qualitative analysis of the subgap DOS for instability under the negative/positive bias illumination stress (N/PBIS) has become a significant issue [4-5].

In this work, we report a technique for extraction of the full-energy range subgap DOS \((g_D(E) \text{ and } g_A(E))\) by using a capacitance-voltage data under dark and photonic states with subgap optical source \(h \nu = E_g \approx 2.6 \text{ eV} \approx E_F\) as a monochromatic photonic capacitance-voltage (MPCV) technique. Through the proposed technique, it is possible to extract the full range subgap DOS over the bandgap in the active amorphous semiconductor layer. Using only one-shot C-V measurement as a function of the gate bias \((V_{GS})\), the subgap DOS can be characterized for the dependence on material, fabrication process, and electrical stress of the active layer. We expect that the proposed method is a powerful tool for characterization of amorphous active layers in TFTs without iteration procedure and/ or complicated calculation.

II. Characterization of \(g_D(E)\) and \(g_A(E)\) over the Bandgap

Fig. 1 shows cross-sectional view and setup for the C-V measurement of n-channel a-IGZO TFTs with an inverted staggered bottom gate. Capacitive equivalent circuit with photo-responsive capacitance \((C_{photo}^D) \text{ and } C_{photo}^A)\) are include for the carriers generated from the localized traps in the amorphous active layer. In Fig. 1(a), negative/positive bias illumination stress \((V_{GS} < V_{TH})\) and \((V_{GS} > V_{TH})\) under photonic state.
In order to obtain $g_{d}(E)$ at a specific energy level, the extracted $AC_{\text{ph},D}$ for a differential V_{GS} (or ϕ_{g}) from experimental C-V data is obtained from

$$AC_{\text{ph},D} = \frac{C_{GS}(V_{GS}) - C_{D}(V_{GS})}{W \times L_{\text{GD}}} \left[\text{F} \cdot \text{cm}^{-1} \right].$$

Finally, we extract $g_{d}(E)$ through

$$g_{d}(E) = \frac{2eC}{q} \left[\text{eV}^{-1} \cdot \text{cm} \right] \left(E_{c} - E_{v} \right), \quad E_{v} < E < E_{c}.$$ \hspace{1cm} (6)

We also note that the photo-responsive charges generated from acceptor-like trap states ($g_{a,D}(E)$) in the energy range $((E_{c}-E_{\text{ph}}))$ are dominant in the accumulation region ($V_{GS}>V_{TA}$) as shown in Fig. 2(b). Therefore, dark and photonic C-V data can be modeled as

$$C_{\text{int}}(V_{GS}) = C_{GD} + C_{CS} + C_{DA}.$$ \hspace{1cm} (7)

$$C_{\text{int}}(V_{GS}) = C_{GD} + C_{CS} + C_{DA}.$$ \hspace{1cm} (8)

with the additional capacitance $C_{\text{ph},A}$ for the optically generated charges from localized traps over the energy ($E_{c}-E_{\text{ph}}$). Combining Eq.(7) with Eq.(8), $C_{\text{ph},A}$ [F] can be obtained through

$$C_{\text{ph},A}(V_{GS}) = \frac{1}{C_{GD} + C_{CS} + C_{DA} + C_{\text{ph},A}}.$$ \hspace{1cm} (10)

For the differential gate bias AV_{GS} (or ϕ_{g}) as a measurement step, we obtain $AC_{\text{ph},D}$ and $g_{a}(E)$ through

$$AC_{\text{ph},D} = \frac{C_{GS}(V_{GS}) - C_{D}(V_{GS})}{W \times L_{\text{GD}}} \left[\text{F} \cdot \text{cm}^{-1} \right]$$

$$g_{a}(E) = \frac{2eC}{q} \left[\text{eV}^{-1} \cdot \text{cm} \right] \left(E_{c} - E_{v} \right), \quad E_{v} < E < E_{c}.$$ \hspace{1cm} (11)

$$g_{a}(E) = \frac{2eC}{q} \left[\text{eV}^{-1} \cdot \text{cm} \right] \left(E_{c} - E_{v} \right), \quad E_{v} < E < E_{c}.$$ \hspace{1cm} (12)

III. Experimental Results and Discussion

For the full-energy range subgap DOS by the proposed technique, we measured the capacitance between the gate and source/drain (connected) for n-channel TFTs with an inverted staggered bottom gate. It was measured by the HP4284A Precision LCR meter at f=40 kHz for a robust data. The TFT employed for the characterization has the gate dielectric (SiO$_{2}$) T_{GD}=200 nm, the active layer IGZO=50 nm, the gate length L=12 μm, the gate width W=24 μm, and the gate-to-S/D overlap length (L_{GD})=4 μm. Fig. 3 shows that measured C_{GD} characteristics under dark and sub-bandgap photonic states (E_{ph}= 2.6 eV).

We note that the overlap capacitance for the gate-source/drain metal contact region is eliminated and the threshold voltage shift caused by the photovoltaic effect under photonic C-V measurement is also compensated for the proposed technique [7]. Therefore, we can extract the intrinsic subgap DOS only for the active layer. For the energy distribution of $g_{d}(E)$ and $g_{a}(E)$, the nonlinear relation between the surface potential ψ_{s} for the energy level can be obtained from the gate bias-dependent C-V data through

$$\psi_{s} = \frac{1}{C_{GS}} \left[1 + \frac{C_{GD}}{C_{GS}} \right] V_{GS}, \quad \psi_{s} = \frac{1}{C_{GS}} \left[1 + \frac{C_{GD}}{C_{GS}} \right] V_{GS} \left[\text{eV} \right].$$

Fig. 4 shows extracted $g_{d}(E)$ and $g_{a}(E)$ from the MPCV can be modeled as a superposition of deep, tail, and shallow states in exponential relations as

$$g_{d}(E) = N_{\text{sh}} \times \exp \left[\frac{E_{c} - E}{k_{B}T_{\text{sh}}} \right] + N_{\text{tail}} \times \exp \left[\frac{E_{c} - E}{k_{B}T_{\text{tail}}} \right] + N_{\text{sh}} \times \exp \left[\frac{E_{c} - E}{k_{B}T_{\text{sh}}} \right].$$

$$g_{a}(E) = N_{\text{sh}} \times \exp \left[\frac{E_{c} - E}{k_{B}T_{\text{sh}}} \right] + N_{\text{tail}} \times \exp \left[\frac{E_{c} - E}{k_{B}T_{\text{tail}}} \right] + N_{\text{sh}} \times \exp \left[\frac{E_{c} - E}{k_{B}T_{\text{sh}}} \right].$$

We obtained characteristic parameters for $g_{d}(E)$ and $g_{a}(E)$ over the bandgap as $N_{\text{sh}}=1.0 \times 10^{17} \left[\text{eV}^{-1} \cdot \text{cm}^{-1} \right], k_{B}T_{\text{sh}}=0.16 \left[\text{eV} \right], N_{\text{sh}}=8.0 \times 10^{16} \left[\text{eV}^{-1} \cdot \text{cm}^{-1} \right], k_{B}T_{\text{sh}}=0.47 \left[\text{eV} \right], N_{\text{sh}}=5.0 \times 10^{17} \left[\text{eV}^{-1} \cdot \text{cm}^{-1} \right], k_{B}T_{\text{sh}}=0.01 \left[\text{eV} \right], N_{\text{sh}}=8.0 \times 10^{16} \left[\text{eV}^{-1} \cdot \text{cm}^{-1} \right], k_{B}T_{\text{sh}}=0.15 \left[\text{eV} \right], N_{\text{sh}}=1.5 \times 10^{17} \left[\text{eV}^{-1} \cdot \text{cm}^{-1} \right], k_{B}T_{\text{sh}}=0.16 \left[\text{eV} \right].$

IV. Conclusion

We reported MPCV technique for extraction of the subgap DOS over the full-energy range through the sub-bandgap photo-responsive C-V characteristics of n-channel a-IGZO TFTs. The extracted subgap DOS is fully separated into donor- and acceptor-like states ($g_{d}(E)$ and $g_{a}(E)$) by using one-shot C-V measurement. The proposed method can be a powerful tool for a robust characterization of structure-, process-, and stress-dependent variation of the subgap DOS in amorphous semiconductor TFTs without simulation and complicated equations.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-0013883 and 2009–0080344). CAD softwares were supported by IC Design Education Center (IDEC).

References