Analytical Current Model for Polymer-based Thin Film Transistors

Considering the Field-Dependent Mobility and Nonlinearity in the Linear Region

Jaehyeong Kim, Jaeman Jang, Jaewook Lee, Woojoon Kim, Inseok Hur, Choonhyung Jo, Sungwoon Jun, Hyeongjung Kim, Kyung Min Lee, Dong Jae Shin, Dong Myong Kim and Dae Hwan Kim

School of Electrical Engineering, Kookmin University, Korea, adrlife@kookmin.ac.kr

Abstract

By using an effective carrier density, we proposed an analytical current model for polymer-based thin film transistors all over the sub- and above threshold regions. We implemented the proposed current model with the reverse Schottky diode model for the nonlinearity and the Poole-Frenkel mobility model for the lateral dependent carrier transport. We verified the proposed model by comparing the measured current characteristics with calculated one and continuity of the output conductance (g_{dy}). We expect that the proposed analytical model can be employed for a fast and efficient circuit simulation.

1. Introduction

Polymer-based thin film transistors (PTFTs) are researched for applications in large area and flexible displays \cite{1} due to low temperature and printing fabrication capability. For a circuit applications, it is important to accurately predict the electrical performance of PTFTs.

In this paper, incorporating the effective carrier density combined with Schottky diode model \cite{3} and Poole-Frenkel mobility \cite{4}, an analytical drain current model is reported for all over the gate and drain bias ranges. The proposed model is verified by comparing the measured I-V characteristics with calculated one. For the accuracy of the model, the nonlinearity of the current characteristics under a small drain bias, which commonly showed in PTFTs, are also verified.

2. Schottky contact model

The source-polymer-drain region can be modeled as a series connection of back-to-back connected Schottky diodes with a gate-bias dependent variable channel resistance as shown in Fig. 1. In order to check the Schottky contact, measured 2-terminal C-V characteristics as shown in Fig. 1. It shows to be a symmetric depletion capacitance characteristic over the whole bias range. For an accurate modeling of the Schottky contacts, characterization of the Schottky contact barrier height (ϕ_b) through the I-V characteristic is important as shown in Fig. 1. Through the thermionic field emission current (ITFE), the Schottky barrier height can be extracted as followings:\cite{5}

$$I_{TFE} = \frac{AA''T^2}{kT} \sqrt{E_o} \cosh \left(\frac{q\phi_b}{kT} \right) e^{-q\phi_b/kT}$$

(1)

$$\phi_b = E_b \ln \left(\frac{AA''T^2}{kT} \sqrt{E_o} \cosh \left(\frac{q\phi_b}{kT} \right) e^{-q\phi_b/kT} \right)$$

(2)

$$E_o = E_{oa} \cosh \left(\frac{E_{oa} kT}{E_o} \right), \ E' = E_o \left[\frac{E_{oa} kT}{E_o} - \tan \left(\frac{E_{oa} kT}{E_o} \right) \right]$$

(3)

where A, A'', h, and m are the contact area, Richardson constant, Planck constant, effective mass of holes, permittivity of the polymer, respectively. With $E_{oa}=3.51\times10^{-3}$, $E_o=0.026$, $E'=2.87\times10^{10}$ are characteristic energies for the thermionic field emission, we finally get the Schottky barrier $\phi_b=0.45$ V.

3. Analytical drain current model

In the polymer channel layer, the energy-dependent donor-like DOS ($g_{dy}(E)$) over the bandgap is modeled as a superposition of exponential deep and tail states as \cite{6}

$$g_{dy}(E)=N_{g0}e^{-\left|E-E_{00}\right|/kT_{00}} + N_{g0}e^{-\left|E-E_{00}\right|/kT_{00}}$$

(4)

with E_r as the valence band minimum, $N_{TD}(N_{TD})$ and $kT_D(kT_D)$ as the effective density of states and the characteristic energy for the donor-like tail(deep) states in the valence band, respectively. The location along the channel is defined as y and that across the channel as x shown in Fig. 1(a). The trapped holes $p_{tr}(x,y)$ in $g_{dy}(E)$, trapped holes $p_{dep}(x)$ in the deep states of $g_{dy}(E)$, trapped holes $p_{tail}(x,y)$ in the tail states of $g_{dy}(E)$, and free holes $p_{free}(x)$ in the valence band are defined as \cite{7}

\begin{align*}
\rho_{TR}(x,y) &= \rho_{TR}(x,y) = p_{tr}(x,y) \quad
\rho_{DEP}(x,y) = N_{TD}kT \times f(T, T_{TD}) e^{-q \left(E_{TD}(x,y) - E_{00} \right) / kT_{TD}} \\
\rho_{PDEP}(x,y) &= N_{g0}kT \times f(T, T_{TD}) e^{-q \left(E_{TD}(x,y) - E_{00} \right) / kT_{TD}}
\end{align*}

(5)

$$f(T, T_{TD}) = \frac{\pi \sin (\pi T/T_{TD})}{(T/T_{TD} - 1)^2}$$

(6)

$$p_{DEP}(x) = N_{TD}kT \times f(T, T_{TD}) e^{-q \left(E_{TD}(x) - E_{00} \right) / kT_{TD}}$$

(7)

We defined T_r as the characteristic temperature of trap states, ϕ_b as the potential across the polymer layer, ϕ_b as the surface potential at polymer/gate insulator interface, $V_{CT}(y)$ as the lateral potential along the channel, ϕ_{F0} as (E_F-E_V), and E_F as the bulk Fermi level under thermal equilibrium. The Poisson’s equation across the active region can be written as

$$\frac{\partial^2 \phi_b(x,y)}{\partial x^2} = -\frac{\rho_{tr}(x,y)}{\varepsilon_p}$$

(8)

with $\rho_{tr}(x,y)$ as charge density. Depending on the gate bias (V_{GD}), the charge density $\rho_{tr}(x)$ in the polymer is approximated by

$$\rho_{tr}(x) = \begin{cases}
\rho_{PEP}(x) & V_{GD} < V_{GR} \\
0 & V_{GR} \leq V_{GD} \leq V_{TP}
\end{cases}$$

(9)

and the proposed effective hole density $\rho_{eff}(x)$ is defined as

$$\rho_{eff}(x) = \begin{cases}
\rho_{PEP}(x) e^{-q \left(E_{TD}(x) - E_{00} \right) / kT_{TD}} & i=1 \text{or} 2 \\
0 & \text{else}
\end{cases}$$

(10)

where ρ_{PEP} is the effective hole density in the valence band and kT_{eff} is the effective characteristic energy with i=1 or 2 for the sub- or above-V_T region. So, the Poisson’s equation can be written as

$$\frac{\partial^2 \phi_b(x)}{\partial x^2} = -\frac{\rho_{tr}(x)}{\varepsilon_p}$$

(11)

With $\phi_b = [\phi_b(x,y)]^2 = [2\phi_b(x,y)]^2 \cdot [\phi_b(x,y)]^2$, the electric field ($E_F(x)$) in the polymer is obtained to be

$$E_F(x) = \frac{-\partial \phi_b(x)}{\partial x} = \frac{p_{eff}(x) E_{oa} kT}{\varepsilon_p} e^{-q \left(E_{TD}(x) - E_{00} \right) / kT_{TD}}$$

(12)

The free charge $Q_{FREED}(\phi_b)$ and total charge $Q_{TOT}(\phi_b)$ per unit area as a function of $\phi_b(x)$ can be obtained to be

$$Q_{FREED}(\phi_b) = \frac{P_{eff}(x) E_{oa} kT}{\varepsilon_p} e^{-q \left(E_{TD}(x) - E_{00} \right) / kT_{TD}}$$

(13)

$$Q_{TOT}(\phi_b) = \frac{P_{eff}(x) E_{oa} kT}{\varepsilon_p} e^{-q \left(E_{TD}(x) - E_{00} \right) / kT_{TD}} - \frac{Q_{FREED}(\phi_b)}{\varepsilon_p}$$

(14)
\[Q_{PREX}(\phi(x)) = q \int_{\phi(x)}^{\phi(x) + \Delta \phi} P_{PREX}(\phi(x)) \, d\phi \] (13)

\[Q_{EX}(\phi(x)) = Q_{PREX}(\phi(x)) + Q_{EXC}(\phi(x)) = \epsilon_j E_j(\phi(x)) \] (14)

By combining Eqs. (13) and (14), therefore, we get \(V_{GS} \) & \(V_{DS} \)-dependent channel mobility \(\mu(\phi(x)) \) as

\[\mu(\phi(x)) = \mu_{base} \epsilon_0 \frac{d}{d\phi} \frac{Q_{PREX}(\phi(x))}{Q_{PREX}(\phi(x))} \]

\[A' = \frac{N_i}{2 q E_0} \left[1 - \frac{1}{2 kT_\phi} \right] \quad B' = \left[\frac{q}{kT_\phi} \right] \quad \beta = \left[\frac{q}{\alpha \pi \epsilon_i \epsilon_0} \right] \alpha = 10 \] (16)

With \(\mu_{base} \) is the valence band mobility, \(\beta \) = Poole-Frenkel factor, \(\alpha \) is effective field factor. Therefore, the drain current \(I_{DS} \) is described by

\[I_{DS} = W dV_{TH} \frac{\mu_{base} \epsilon_0}{2 q E_0} A' B' e^{-\left[(h_{\nu_a})/(\nu_a + 1)\right]} \] (17)

\[C' = \left[2 \frac{kT_\phi}{q} - 3 \right] \] (18)

Gauss' law applied to the boundary between the polymer and gate insulator gives a nonlinear relation between \(V_{GS} \) and \(\phi_k \) through (12) as

\[V_{GS} = V_{FB} + \phi_k + \frac{q}{C_{OX}} \] (20)

From Eq. (20), we obtain

\[\frac{dV_{GS}(y)}{d\phi_k(y)} = 1 - \frac{2q}{q(V_{GS} - V_{FB} - \phi_k)} \] (21)

with \(V_{FB} \) the flat band voltage and \(C_{OX} \) is the oxide capacitance per unit area. Finally, we get the drain current equation as

\[I_{DS}(N_{ox}, kT_\phi) = W \mu_{base} \epsilon_0 \frac{A' N_i}{2 q E_0} C \left[\frac{C_{OX}}{2qE_0C_{OX}} \right]^{\nu_a} \]

\[\times \left[\left(\frac{1}{2kT_\phi} \right)^{1/2} \right] \left[\left(V_{GS} - V_{FB} - \phi_k \right) - \left(V_{GS} - V_{0} - \phi_k \right) \right] \]

And from the Schottky diode current equation [3] is

\[I_{Schottky} = AA'' e^{2qV_{GS}/kBT} \left(e^{qV_{GS}/kBT} - 1 \right) \] (23)

Finally, the total drain current over the sub- and above-\(V_t \) regions for the PFT model is described as a series connection of the Schottky diodes at S/D contacts with the \(V_{GS} \)-dependent channel resistance can be described by

\[1 \quad \text{I}_{S/D} = \frac{1}{I_{DS, sub}(P_{eff} 1, kT_{eff})} + \frac{1}{I_{DS, above}(P_{eff} 2, kT_{eff})} + \frac{1}{I_{Schottky}} \] (24)

4. Conclusion

We proposed an analytical drain current model for polymer-based thin film transistors by using an effective carrier density over the below- and above-threshold regions. A PFT is electrically modeled as a series connection of back-to-back Schottky diodes with \(V_{GS} \)-dependent channel resistance. In the analytical drain current model, S/D contacts are modeled as Schottky diodes for a strong nonlinearity in the linear region. The Poole-Frenkel mobility model is incorporated for the lateral field-dependent carrier transport. Analytical I-V model was verified by comparing the measured I-V characteristics with calculated ones over a wide range of the drain bias. Especially, proposed model reproduces the nonlinearity in the linear region. We expect the proposed analytical model to play a role in the process optimization and efficient design for PFT-based circuits.

Acknowledgements

This work was supported by the National Research Foundation (NRF) grant funded by the Korea government (MEST) (No. 2012-0000147 and 2012-0005001) and the CAD softwares were supported by Silvaco Korea. The devices were supported by Samsung Advanced Institute of Technology (SAIT).

References

Fig. 1. (a) The cross-sectional view and 2-terminal measure set up of PFTTs. And the (b) I-V and C-V (inset) characteristics of source-polymer-drain back-to-back Schottky diode.

Fig. 2. I_{DS}-V_{GS} characteristics (a) in a linear scale and in a semi-log scale. (b) I_{DS}-V_{GS} characteristics and output conductance are compared with the measured ones for a PFT with W/L=120 μm/12 μm.

Table 1. The structural and extracted parameters for analytical I-V model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/L [μm]</td>
<td>120/12</td>
<td>N_{0} [cm^{-2}]</td>
<td>8.5 \times 10^{14}</td>
</tr>
<tr>
<td>T\text{GOx/Pyrene} [nm]</td>
<td>300/50</td>
<td>P_{eff} [cm² eV^{-1}]</td>
<td>5.26 \times 10^{4}</td>
</tr>
<tr>
<td>μ_{base} [cm²/V s]</td>
<td>0.146</td>
<td>kT_{eff} [eV]</td>
<td>0.031</td>
</tr>
<tr>
<td>N_{0} [cm^{-2}]</td>
<td>3 \times 10^{19}</td>
<td>P_{eff} [cm² eV^{-1}]</td>
<td>1.0 \times 10^{4}</td>
</tr>
<tr>
<td>μ_{0} [cm²/V s]</td>
<td>17.36</td>
<td>kT_{eff} [eV]</td>
<td>0.0295</td>
</tr>
<tr>
<td>m [kg]</td>
<td>0.4/4</td>
<td>V_{TH} [V]</td>
<td>-1.5</td>
</tr>
<tr>
<td>ε_{0}</td>
<td>3</td>
<td>φ_{th} [V]</td>
<td>0.45</td>
</tr>
</tbody>
</table>