Subgap Density-of-States (DOS)-based Simulation for Instability-Aware Design of Oxide TFTs

Dae Hwan Kim*, Jaeman Jang, Kyung Min Lee, Sung-Jin Choi, and Dong Myong Kim

School of Electrical Engineering, Kookmin University, Seoul 136-702, Republic of Korea
e-mail: drlife@kookmin.ac.kr

It has been widely accepted in the field that amorphous oxide semiconductor thin-film transistors (TFTs) are within executable possibility allowing to be commercially viable devices driving the next generation display backplanes with the cohesion of performance and cost-effectiveness. However, there have been unremitting drawbacks in successful commercialization of the oxide TFT technology due to insufficient understanding of instability issues and the design technique.

In order to ameliorate the long-term instability of oxide TFTs, we focus on the physical parameter-based model and simulation, which are based on the subgap density-of-states (DOS) and the DOS extraction technique in connection with the results of thin-film analysis. Also, the relationship between the simulation results and the measured negative bias illumination stress (NBIS) instabilities of oxide TFTs would be presented in a coherent manner. Besides, the NBIS time-evolutions of I-V characteristics, which were measured in various oxide TFTs, would be discussed confirming that they correspond well with the results of our simulation model [Fig.1 and 2]. Finally it was found that our NBIS model was consistent either with the oxygen vacancy ionization [1] or with the peroxide-induced meta-stability [2]. As a consequence, the work we discuss would be reflecting that our results demonstrate the potential of playing a powerful role in the instability-aware design of oxide TFTs without a long-term stress test.

Acknowledgment This work was supported by the National Research Foundation of Korea (Grant No: NRF-2013R1A1A2013100) and in part by the BK21+ with the Educational Research Team for Creative Engineers on Material-Device-Circuit Co-Design (Grant No: 22A20130000042).

Fig. 1 The I-V characteristics of various oxide TFTs.

Fig. 2 The NBIS time-evolutions of I-V characteristics and DOS in various oxide TFTs.