\(V_{GS}/V_{DS} \) Configuration-Dependence of Positive Bias Stress-Induced Instability in Self-Aligned Top-Gate IZO TFTs

Sungju Choi\(^1\), Jaeman Jang\(^1\), Hyeongju Kang\(^1\), Daegyun Kim\(^1\), Kyung Min Lee\(^1\), Jong Hwa Kim\(^1\), Dong Myung Kim\(^1\), Sung-Jin Choi\(^1\), Jae Chul Park\(^2\), \& Dae Hwan Kim\(^1\)

\(^1\)School of Electrical Engineering, Kookmin University, Seoul, 136-702, Korea

Tel.: 82-2-910-4872, E-mail : drlife@kookmin.ac.kr

\(^2\)Samsung Advanced Institute of Technology, Suwon-Si, 443-742, Korea

E-mail : jackpot.park@samsung.com

Since mass production of the oxide thin-film transistor (TFT)-driven backplanes in active-matrix organic light-emitting diode (AMOLED) displays began very recently, detailed understanding of instability in oxide TFTs under AMOLED operation condition has become indispensable for successful commercialization of oxide emitting diode (AMOLED) displays. In this work, the current-flowing stress-induced instability is investigated in the self-aligned top-gate indium-zinc-oxide (IZO) TFTs and the related mechanisms are discussed with two different \(V_{GS}/V_{DS} \) configurations, i.e., a high \(V_{DS} \) (HVDS, \(V_{GS}/V_{DS} = 10V/30V \)) and high \(V_{GS} \) (HVGS, \(V_{GS}/V_{DS} = 30V/10V \)) stress conditions. The subgap density-of-states (DOS) was traced during the stress time by using the multifrequency C-V method. As the stress time increased, the frequency-dispersion of C-V characteristics and the shift of threshold voltage (\(\Delta V_T \)) became prominently different from each other with varying \(V_{GS}/V_{DS} \) configurations [Fig. 1(a), (b)]. In comparison with HVGS, both generation of deep trap and the annihilation of shallow trap were clearly observed only in HVGS condition [Fig. 1(c), (d)]. This finding was consistent not only with the positive \(V_{GS}/V_{DS} \) stress time-evolutions of I-V and C-V characteristics, but with the \(V_{GS}/V_{DS} \) configuration-dependence as well.

Fig. 1. (a) Capacitance-voltage curves and (b) \(\Delta V_T \). The stress time evolutions of DOS in (c) HVDS and (d) HVGS conditions.

Acknowledgment

This work was supported by the National Research Foundation (NRF) funded by the Korean government (MEST) (Grant No: 2013R1A1A2013100) and in part by the BK+ with the Educational Research Team for Creative Engineers on Material-Device-Circuit-Co-Design (Grant No: 22A20130000042).

References