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Abstract — Decomposition of the positive gate-bias temperature stress (PBTS)-induced instability into
contributions of distinct mechanisms is experimentally demonstrated at several temperatures in
top-gate self-aligned coplanar amorphous InGaZnO thin-film transistors by combining the stress-
time-divided measurements and the subgap density-of-states (DOS) extraction. It is found that the
PBTS-induced threshold voltage shift (ΔVT) consists of three mechanisms: (1) increase of DOS due to
excess oxygen in the active region; (2) shallow; and (3) deep charge trapping in the gate insulator
components. Corresponding activation energy is 0.75, 0.4, and 0.9 eV, respectively. The increase of
DOS is physically identified as the electron-capture by peroxide.
Proposed decomposition is validated by reproducing the PBTS time-evolution of I–V characteristics
through the technology computer-aided design simulation into which the extracted DOS and charge
trapping are incorporated. It is also found that the quantitative decomposition of PBTS-induce ΔVT

accompanied with the multiple stretched-exponential models enables an effective assessment of the
complex degradation nature of multiple PBTS physical processes occurring simultaneously. Our results
can be easily applied universally to any device with any stress conditions, along with guidelines for
process optimization efforts toward ultimate PBTS stability.

Keywords — amorphous InGaZnO thin-film transistors with the top-gate self-aligned coplanar structure,
experimental decomposition of positive-bias temperature stress instability.
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1 Introduction

Although amorphous InGaZnO (a-IGZO) thin-film transistors
(TFTs) have been successfully employed in commercial
display products, such as organic light-emitting diode
(OLED) displays and liquid-crystal displays,1–4 the device
stability requirement ironically becomes more stringent in
future displays with higher resolution, higher frame rate,
higher brightness, and longer product lifetime. Precise
understanding of the physical origin of degradation
mechanism of device instability is really indispensable for
oxide TFT-based displays. Current-driving TFTs in an OLED
pixel, as well as TFTs in gate-driver circuitry are often under
the influence of positive gate-bias temperature stress (PBTS).
Under the influence of PBTS, the threshold voltage (VT)
shifts in the positive direction. The physical origin of PBTS
instability has been classified largely by either (1) trapping of
electrons in the gate insulator (GI),5,6 or (2) change in defect
states in the active region.7–9

Generally, in previous reports, the PBTS instability has
been attributed to one of the two stated mechanisms as the
dominant mechanism. For example, when the transfer curves
show a parallel shift and the subthreshold swing (SS) does not
change with stress time, charge trapping is referred to as the
dominant mechanism. However, this method is not always
applicable, because it is hard to determine how much of each
degradation mechanism can be attributed to the VT shift
(ΔVT) when the SS does change. If the newly created defects
in the channel in the vicinity of the active-to-GI interface have
energy well below the Fermi-level, it might not show up as an
increase in SS value.10 Moreover, the dominant mechanism is
dependent on the device structure, fabrication process, and
stress conditions. For example, devices with a GI of poor
quality have a high probability of having charge trapping as
the dominant mechanism. In other cases, even with a high-
quality GI, the intrinsic defects in the active region can be
minimized via annealing or optimization of the a-IGZO
deposition process, and charge trapping may still be
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responsible as the dominant mechanism. Because several
degradation mechanisms of different nature may take part in
the PBTS instability, ascribing to one particular dominant
mechanism may be irrelevant. Therefore, a novel method that
can systematically determine the quantitative contribution of
several mechanisms is required.

On the other hand, the a-IGZO TFTs with top-gate self-
aligned (TG-SA) coplanar structure were successfully
implemented in manufacturing the ultra-high definition (UHD)
OLED televisions.4 The TG-SA coplanar structure has many
advantages, such as higher performance due to no overlap
capacitance between gate and source/drain (S/D) and better
channel length scalability, better process controllability through
subsequent processes includingGI deposition, plasma treatment,
and thermal annealing, and a lower VT with better SS due to its
better electrostatic integrity than bottom-gate structure.11,12

However, the instability of TG-SA coplanar IGZO TFTs has
been rarely investigated in spite of its great importance.6,12

Motivated by these backgrounds, we proposed the subgap
density-of-states (DOS) based systematic decomposition of
the positive bias stress-induced ΔVT in TG-SA coplanar
a-IGZO TFTs and demonstrated it at a room temperature.13

In this work, as a further study for our previous work, the
decomposition of PBTS instability into contributions of
distinct mechanisms is experimentally demonstrated at
several temperatures in TG-SA coplanar a-IGZO TFTs and
further validated with the activation energy for an individual

mechanism by reproducing the PBTS time-evolution of I–V
characteristics through the technology computer-aided design
(TCAD) simulation into which the extracted DOS and charge
trapping are incorporated. It is also found that the
quantitative decomposition of PBTS ΔVT accompanied with
the multiple stretched-exponential (MSE) model enables an
effective assessment of the complex degradation nature of
multiple PBTS physical processes occurring simultaneously.

2 Fabrication process and device characteristics

The a-IGZO TFTs have a TG-SA coplanar structure, as shown in
Fig. 1(a). The 30-nm-thick a-IGZO layer (In:Ga:Zn = 1:1:1 at%) is
deposited by dc sputtering. A 100-nm SiO2 layer is deposited by
plasma enhanced chemical vapor deposition (PECVD) to serve
as the GI. Interlayer dielectrics are deposited and patterned for
S/D openings. Gate and S/D electrodes are formed by sputtering
Cu/MoTi. Device size is W/L = 12/6 μm. Fig. 1(b)–(e) show the
measured PBTS time-evolutions of transfer curves, field-effect
mobility in saturation mobility (μFE,sat), SS, and VT during PBTS
(tstr = 104 s, VGS = 30 V, and VDS = 0 V) and additional 104 s
recovery time (trec = 2 × 104 s, VGS = VDS = 0 V). The PBTS tests
of different temperatures are applied to different a-IGZO TFTs
with the same fabrication process and structure. The difference
observed in the initial device characteristics at three different

FIGURE 1 — (a) Device structure of TG SA coplanar a-InGaZnO (IGZO) thin-film transistor. Device W/L = 12 μm/
6 μm. The positive gate-bias temperature stress time-evolutions of (b) transfer curves, (c) field-effect mobility μFE,sat,
(d) subthreshold swing, and (e) VT during positive gate-bias temperature stress (tstr = 104 s) and additional 104 s recovery
time (trec = 2 × 104 s).

Kim et al. / Decomposition of the PBTS instability in IGZO TFTs 99



temperatures [Fig. 1(b)–(e)] is mainly due to both the carrier
density and the Fermi-level position at a specific bias condition,
which are not only dependent on the DOS but also strongly
affected by the temperature. The μFE,sat is extracted from the

maximum value of ∂
ffiffiffiffiffi
IDS

p
∂VGS

� �2
= CoxW

2�L at VDS = 10 V, where the

Cox is the GI capacitance per unit area. In addition, the SS is
determined from IDS = 0.1–1 nA in subthreshold region, and
the VT is defined as the value of VGS inducing IDS = W/
L × 10 nA at VDS = 10 V.

Subgap DOS of a-IGZO is extracted from the photo-
response of C-V curves [Fig. 2].14 The measured bandgap of
IGZO is Eg = 3.03 eV while the energy of incident photons
is 2.82 eV.

Extracted DOS’s are shown in the symbols in Fig. 3(a)–(d),
which consist of four components according to their
distribution shapes in energy level: donor-like tail states
(gTD), excess oxygen defect states (gOex), acceptor-like deep
states (gDA), and tail states (gTA), in increasing order of the
energy levels. The DOS profile is found to be well fitted

FIGURE 2 — Photo-response of C-V curve at (a) 300, (b) 333, and (c) 373 K. Inset in (b) shows the schematic of
measurement setup.

FIGURE 3 — Extracted density-of-state (DOS) near (a)–(c) EV and (d) EC during positive gate-bias temperature stress
(PBTS) at various temperatures. Experiments and models are denoted as open symbols and lines. Schematic views
illustrating (e) the microscopic origin of ΔVT,DOS and (f) the increase of gOex during PBTS.
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with following model equations [lines in Fig. 3(a)–(d)] as
follows:

gTD Eð Þ þ gOex Eð Þ ¼ NTD exp �E� EV

kTTD

� �

þNOex exp � E� EV � EOex

kTOex

� �2
 ! (1)

gTA Eð Þ þ gDA Eð Þ ¼ NTA exp �EC � E
kTTA

� �

þNDA exp � EC � EDA � E
kTDA

� �2
 ! (2)

The DOS parameters are summarized in Table 1. Here,
the NDOS, such as NTD, NOex, NDA, and NTA, is the density
and the kTDOS, such as kTTD, kTOex, kTDA, and kTTA, is the
characteristic energy, respectively. The EDOS, such as EOex

and EDA, is the center energy of the Gaussian DOS peak.
The EC/EV is the conduction/valence band edge.

The only component that gives a significant change in
DOS during PBTS is the gOex, which is located in the
energy range of 0.7 eV above EV, as shown in Fig. 3(a)–(d)
and Table 1. This gOex seems to partially relate with the
ppπ* (occupied) states in the Oex (excess oxygen) peroxide
(i.e., O–O dimer) configuration, and also with the ppσ*

states after electron-capture by the peroxide.15,16 During
PBTS, the empty ppσ* anti-bonding state in the
conduction bands captures two electrons letting the
peroxide transform into the fully-oxidized state, that is,
(O–Oex)2�+2e� ! O2�+O2�, as seen in Fig. 3(e).15 The
occupied ppσ* state then moves into the gOex energy range
as illustrated in Fig. 3(f).16 Thus, the actual change of the
gOex originates from the increase of the ppσ* state
capturing electrons, and that is the reason why gOex has
an acceptor-like character. The increase of gOex should
accompany the decrease of empty ppσ* states inside the
conduction bands.

3 Experimental decomposition of positive
gate-bias temperature stress ΔVT

Figure 4 illustrates the decomposition scheme of a total ΔVT,
that is, ΔVT,tot(t), into the contributions of distinct
mechanisms. The measured ΔVT,tot(t) at a specific tstr is
schematically illustrated in Fig. 4(a). In the recovery
characteristics, the ΔVT lowers quickly at the early stage of
recovery and saturates to a certain value. The trec is defined
as the time when dΔVT,tot(t)/dt < 10�6 (V/s). The saturated
value of the recovery portion (ΔVT,fast) is measured after trec
as denoted by ② in Fig. 4(a). This fast recovery component
may still include several mechanisms and requires further
decomposition.

First, we investigate ΔVT recovery characteristics not only
after the entire stress stage (tstr in Fig. 4(a)), but also in
between stress-time intervals during the stress stage as
denoted by tstr1, tstr2, and tstr3 in Fig. 4(b). In this way, ΔVT,fast

is sampled at t = tstr1, tstr2, and tstr3 in order to trace the PBTS
time-evolution of ΔVT,fast during t = tstr, which is called as “the
stress-time-divided measurement”. Second, we measure the
ΔVT contribution caused by the PBTS-induced change in
DOS of the channel layer, that is, ΔVT,DOS which is denoted
by ① in Fig. 4(a), and trace the PBTS time-evolution of
ΔVT,DOS as denoted by tstr1, tstr2, and tstr3 in Fig. 4(b) and
Table 1.

Then, we express the positive ΔVT because of the increase
of gOex after the positive gate-bias temperature stress during
tstr as follows:

ΔVT;DOS tstrð Þ ¼ qtIGZO
Cox

ðEF

EV

gOex E; t ¼ tstrð ÞdE�
ðEF

EV

gOex E; t ¼ 0ð ÞdE

0
B@

1
CA
(3)

where q is the elementary charge of an electron, tIGZO is the
active layer thickness, and Cox is the gate insulator capacitance
per unit area. We will denote this as the first mechanism (Oex)
for PBTS instability. Noticeably, the increase of gOex during

TABLE 1 — Extracted DOS parameters during PBTS.

Parameter
NDOS

[eV�1 cm�3]
kTDOS

[eV] EDOS [eV]

gTA (Acceptor-like tail states) 2.0 × 1018 0.03 -
gDA (Acceptor-like deep states) 6.0 × 1016 0.75 0.8
gOex Temp. = 300 K Initial 0.3 × 1016 0.4 0.7

After stress (104 s) 0.8 × 1016

After recovery (+104 s) 0.65 × 1016

Temp. = 333 K Initial 0.3 × 1016

After stress (104 s) 0.95 × 1016

After recovery (+104 s) 0.75 × 1016

Temp. = 333 K Initial 0.3 × 1016

After stress (104 s) 1.1 × 1016

After recovery (+104 s) 0.8 × 1016

gTD (Donor-like tail states) 5.0 × 1018 0.015 -

DOS, density-of-state; PBTS, positive gate-bias temperature stress.
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PBTS is found to decrease (partially recover) after PBTS, as
shown in Fig. 3(a). Recovery of VT due to the DOS
restoration, ΔVT,DOS,rec, which is denoted by ③ in Fig. 4(a),
can also be derived similarly to Eq. (3), by performing DOS
integration as follows:

ΔVT;DOS;rec tstrð Þ ¼ qtIGZO

Cox

ðEF

EV

gOex E; t ¼ tstrð ÞdE�
ðEF

EV

gOex E; t ¼ trecð ÞdE

0
B@

1
CA

(4)

Hence, a part of the fast recovery (ΔVT,fast: ② in Fig. 4(a))
should come from ΔVT,DOS,rec (③ in Fig. 4(a)). By excluding
the ΔVT,DOS,rec from ΔVT,fast(tstr), we can determine the fast
recovery component caused solely by the GI as ΔVT,shallow(tstr)
(④ in Fig. 4(a)). For now, we will attribute this self-recoverable
GI component as electrons de-trapping from “shallow traps” in
the GI, because the electrons are able to escape the energy
barrier by mere kT energy, hence the subscript. We will
later validate this second PBTS instability mechanism (shallow
GI trapping) component by comparing the result of
well-calibrated TCAD simulation with the measured ΔVT.

After disclosure of these two mechanisms, we are left with
the remaining VT amount that does not recover in the absence
of additional thermal energy, and does not originate from the
DOS change in the active region. The remaining ΔVT portion
is most likely to relate with deep (in space or in energy) GI
trapping, which does not recover at moderate temperatures.
Hence, we will assign the last component as “deep GI
trapping” (⑤ in Fig. 4(a)), which is obtained by

ΔVT;deep tð Þ ¼ ΔVT;tot tð Þ � ΔVT;DOS tð Þ � ΔVT;shallow tð Þ: (5)

The three different ΔVT portions due to PBTS are
separated into three different contributions, by explicitly
measuring the ΔVT increase and recovery solely by the
peroxide mechanism via DOS analysis, and by assigning the
remaining fast and slow recovering portions to the shallow
and deep GI trapping mechanisms, respectively [Fig. 4(c)].
The ΔVT separations based on the stress-time-divided
measurements are performed for three different stress times:
tstr1, tstr2, and tstr3 = 500, 3600, and 104 s [Fig. 5].
Experimentally decomposed ΔVT,DOS, ΔVT,shallow, and ΔVT,

deep are plotted as a function of the stress time, as denoted
by the symbols in Fig. 6.

Figure 7(a) shows the contribution percentage of each
component to the PBTS ΔVT,tot after tstr = 104 s at varying
temperatures of 27, 60, and 100 °C. The ΔVT,deep

percentage ~ 70% is reasonable because in this work, process
conditions were controlled to minimize excess oxygen content
in the GI/channel interface to reduce both ΔVT,DOS and ΔVT,

shallow, leaving the GI deep trapping component as the
dominant PBTS degradation mechanism.

4 Multiple stretched-exponential function model

We assume the ΔVT,tot under PBTS and/or recovery (ΔVT,tot

(t) = VT(t) � VT(t = 0)) is a combination of several

FIGURE 4 — (a) The procedure of experimental decomposition of positive gate-bias temperature stress ΔVT,tot into the
density-of-state change (ΔVT,DOS), GI deep trapping (ΔVT,deep), and GI shallow trapping (ΔVT,shallow) components at
specific tstr and trec. The circled number indicates the order of acquiring experimental data. (b) The stress-time-divided
measurement and (c) finally decomposed ΔVT as the function of tstr.
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FIGURE 6 — Decomposed ΔVT(tstr) at T = 300, 333, and 373 K. Symbol: experiment. Line: stretched exponential model.

FIGURE 7 — (a) The result of decomposing positive gate-bias temperature stress (PBTS) ΔVT,tot into three
components after tstr = 104 s. (b) Characteristic time constant as a function of PBTS temperature to extract the
effective energy barrier, that is, activation energy Ea, for each degradation mechanism.

FIGURE 5 — Measured stress-time-divided ΔVT(tstr) at T = 300, 333, and 373 K.
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components with different nature (ΔVT,tot=ΔVT1+ΔVT2+…),
and will be broken down by using experimental techniques.
The time evolution of ΔVT under bias-stress is commonly

modeled by the stretched-exponential (SE) function, which
is expressed as follows8,17:

ΔVT;tot tð Þ ¼ ΔVT0 1� exp � t
τ

� �β� �� �
(6)

where ΔVT0 is the ΔVT at infinite time, τ is the characteristic
time constant, and β is the stretching exponent with a value
smaller than 1. After ΔVT decomposition from PBTS at
various temperatures, each degradation mechanism
component will possess its own set of fitting parameters to
the SE function (ΔVT0, τ = τ0 × exp(Ea/kT), β, and Ea).
Therefore, ΔVT,tot(t) can be modeled by using the multiple
SE (MSE) function as follows:

ΔVT;tot tð Þ ¼ ΔVT;DOS tð Þ þ ΔVT;deep tð Þ þ ΔVT;shallow tð Þ

¼ ΔVT0;DOS 1� exp � t
τDOS

� �βDOS
 !" #

þΔVT0;deep 1� exp � t
τdeep

 !βdeep
0
@

1
A

2
4

3
5

þΔVT0;shallow 1� exp � t
τshallow

� �βshallow
 !" #

(7)

The lines in Fig. 6 show that all of ΔVT,DOS, ΔVT,shallow, and
ΔVT,deep are well fitted with the SE functions with individual
parameters, and the ΔVT,tot(t) is well described by the
superposition of MSE functions. It suggests the assumption

TABLE 2 — Stretched-exponential (SE) function parameters.

Temp. 300 K 333 K 373 K

ΔVT,shallow ΔVT0,shallow 0.1 0.15 0.17
βshallow 0.45 0.5 0.55
τshallow 1.50 × 105 7.00 × 103 1 × 103

ΔVT,deep ΔVT0,deep 2.7 3.2 4.2
βdeep 0.3 0.45 0.68
τdeep 7.00 × 106 3.00 × 105 3.00 × 104

ΔVT,DOS ΔVT0,DOS 0.05 0.15 0.4
βDOS 0.35 0.4 0.55
τDOS 4.00 × 104 2.10 × 103 5.20 × 102

Unit V/-/s V/-/s V/-/s

TABLE 3 — TCAD parameters describing the GI electron traps.

Parameter Definition Value

NOT1 [cm
�3] Density of shallow electron traps in

GI (4 nm near GI/IGZO interface)
3 × 1019

EOT1 [eV] Energy level of shallow electron trap EC(GI)-2.2
NOT2 [cm

�3] Density of deep electron traps in GI
(far from the 4-nm region near
GI/IGZO interface)

1 × 1019

EOT2 [eV] Energy level of deep electron trap EC(GI)-4
σ [cm2] Capture cress section of electron trap 1 × 10�13

τOT1 [s] De-trapping time from the shallow electron trap 2 × 103

τOT2 [s] De-trapping time from the deep electron trap 1 × 106

GI, gate insulator; IGZO, InGaZnO.

FIGURE 8 — The TCAD-simulated I–V curves (line) compared with measured ones (symbol).
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in Eq. (7) is reasonable. Detailed SE function parameters are
shown in Table 2.

The effective energy barrier Ea is found to be 0.75, 0.40,
0.90 eV for the ΔVT because of DOS increase, GI shallow
trapping, and GI deep trapping, respectively, by using the
temperature-dependence of τ, as shown in Fig. 7(b). Effective
energy barrier values Ea,shallow = 0.40 eV and Ea,deep = 0.90 eV
is in good agreement with values from studies where charge
trapping was the dominant mechanism, where Ea values range
from 0.38 to 1.33 eV.17,18 On the other hand, it is noteworthy
that the extracted Ea,DOS = 0.75 eV coincides with the energy
difference between the calculated oxygen interstitial (Oi) level
and the Fermi-level under PBTS.15 Considering the activation
energy for the peroxide dissociation through electron trapping
has been calculated to be 0.8–0.9 eV,15,16 the extracted Ea,

DOS = 0.75 eV is well within range of previously reported values
lending confidence to the proposed method to partition the
ΔVT,DOS component.

5 TCAD simulation-based verification

In order to validate the decomposed PBTS degradation
mechanisms, the PBTS time-evolution of DOS is incorporated
into TCAD simulation tool,19 which quantitatively reflects the
ΔVT,DOS components. The electron trapping into GI
shallow/deep traps is also taken into account by using the TCAD
model supporting the Fowler–Nordheim tunneling, band-to-
band tunneling, trap-assisted tunneling, and Poole–Frenkel
emission. The electron trapping into GI is simulated by tuning
the electron trapping-related TCAD model parameters, such as
the energy level, band offset, spatial position/density, capture
cross section, and escape frequency of GI shallow/deep traps.
Our TCAD framework was already well-calibrated in terms of
the incorporation of both the electron trapping into GI and the
DOS profile. Detailed parameters are summarized in Table 3.

Figures 8 and 9 show that our TCAD simulation results
reproduce the measured PBTS time-evolutions of I–V curves

and VT’s very well. It suggests that our decomposition method
is valid and the individual instability mechanism is reasonably
identified.

6 Conclusions

We have demonstrated a universal method to experimentally
determine the quantitative contributions of PBTS instability
mechanisms in the TG SA coplanar a-IGZO TFTs by
combining the stress-time-divided measurements and the
DOS extraction. We have successfully decomposed the ΔVT

caused by PBTS into three mechanisms: (1) increase of
DOS due to excess oxygen in the active region; (2) shallow;
and (3) deep charge trapping in the GI components. The
MSE model is used to obtain a separate set of fitting
parameters for each experimentally determined component
and to gain insight into the physical origin of PBTS instability.
We validated the proposed method by comparing the TCAD

simulation results with the measured data. Our results can
be easily applied universally to any device with any stress
conditions, along with guidelines for process optimization
efforts toward ultimate PBTS stability.
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